Pine wilt disease (PWD) is a devastating plant disease caused by the pinewood nematode (PWN, ) that is transmitted by several beetle species in the genus, . Once present, the disease is difficult to control. Prevention rather than control is regarded as an effective strategy for PWD management.
View Article and Find Full Text PDFRecently, Zylstra et al. reported that wet sclerophyll forest left unburnt for 75 years experiences a marked decrease in flammability, requiring a radical rethink about fire management. This also highlights the vertical dimension of fires, with species conservation favored by a mosaic of fire types (high pyrodiversity).
View Article and Find Full Text PDFBackground And Aims: The prevailing view from the areocladogenesis of molecular phylogenies is that the iconic South African Cape Proteaceae (subfamily Proteoideae) arrived from Australia across the Indian Ocean during the Late Cretaceous (100-65 million years ago, Ma). Since fossil pollen indicates that the family probably arose in North-West Africa during the Early Cretaceous, an alternative view is that it migrated to the Cape from North-West-Central Africa. The plan therefore was to collate fossil pollen records throughout Africa to determine if they are consistent with an African (para-autochthonous) origin for the Cape Proteaceae, and to seek further support from other palaeo-disciplines.
View Article and Find Full Text PDFBackground: Relative growth rate (RGR) has a long history of use in biology. In its logged form, RGR = ln[(M + ΔM)/M], where M is size of the organism at the commencement of the study, and ΔM is new growth over time interval Δt. It illustrates the general problem of comparing non-independent (confounded) variables, e.
View Article and Find Full Text PDFThousands of plants produce both extrafloral nectaries (EFNs) on their leaves and nutrient-rich appendages on their diaspores (elaiosomes). Although their individual ecology is well-known, any possible functional link between these structures has almost always been ignored. Here, we recognized their co-presence in the shrub, (Proteaceae), and studied their function and interaction.
View Article and Find Full Text PDFA new fossil discovery reported by Shi et al. changes our understanding of the biogeographic history of the cosmopolitan family, Rhamnaceae. Flowering shoots of the African genus Phylica (Rhamnaceae) dated at 100 million years ago (Ma) imply a 250 Ma origin of the family in fire-prone Gondwanan vegetation that enabled overland dispersal to all continents where it is currently widespread.
View Article and Find Full Text PDFSetting the molecular clock to newly described 100-million-year-old flowering shoots of in Burmese amber enabled us to recalibrate the phylogenetic history of Rhamnaceae. We traced its origin to ∼260 million years ago (Ma) that can explain its migration within and beyond Gondwana since that time and implies an origin for flowering plants that stretches well beyond 290 Ma. Ancestral trait assignments also revealed that hard-seededness, fire-proneness, and to a lesser extent, heat-released seed dormancy, have a similarly long history in this clade.
View Article and Find Full Text PDFSeed dormancy varies greatly between species, clades, communities, and regions. We propose that fireprone ecosystems create ideal conditions for the selection of seed dormancy as fire provides a mechanism for dormancy release and postfire conditions are optimal for germination. Thus, fire-released seed dormancy should vary in type and abundance under different fire regimes.
View Article and Find Full Text PDFA mechanistic understanding of fire-driven seedling recruitment is essential for effective conservation management of fire-prone vegetation, such as South African fynbos, especially with rare and threatened taxa. The genus Leucadendron (Proteaceae) is an ideal candidate for comparative germination studies, comprising 85 species with a mixture of contrasting life-history traits (killed by fire vs able to resprout; serotinous vs geosporous) and seed morphologies (nutlets vs winged achenes). Individual and combined effects of heat and smoke on seed germination of 40 species were quantified in the laboratory, and Bayesian inference applied to distinguish biologically meaningful treatment effects from non-zero, but biologically trivial, effects.
View Article and Find Full Text PDFBackground And Aims: Fine-scale spatial patterns of the seedlings of co-occurring species reveal the relative success of reproduction and dispersal and may help interpret coexistence patterns of adult plants. To understand whether postfire community dynamics are controlled by mathematical, biological or environmental factors, we documented seedling-adult (putative parent) distances for a range of co-occurring species. We hypothesized that nearest-seedling-to-adult distances should be a function of the distance between the closest conspecific seedlings, closest inter-adult distances and seedling-to-parent ratios, and also that these should scale up in a consistent way from all individuals, to within and between species and finally between functional types (FTs).
View Article and Find Full Text PDFMany terrestrial ecosystems are fire prone, such that their composition and structure are largely due to their fire regime. Regions subject to regular fire have exceptionally high levels of species richness and endemism, and fire has been proposed as a major driver of their diversity, within the context of climate, resource availability and environmental heterogeneity. However, current fire-management practices rarely take into account the ecological and evolutionary roles of fire in maintaining biodiversity.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
June 2019
Fire has shaped the evolution of many plant traits in fire-prone environments: fire-resistant tissues with heat-insulated meristems, post-fire resprouting or fire-killed but regenerating from stored seeds, fire-stimulated flowering, release of on-plant-stored seeds, and germination of soil-stored seeds. Flowering, seed release and germination fit into three categories of response to intensifying fire: fire not required, weakly fire-adapted or strongly fire-adapted. Resprouting also has three categories but survival is always reduced by increasing fire intensity.
View Article and Find Full Text PDFDespite decades of broad interest in global patterns of biodiversity, little attention has been given to understanding the remarkable levels of plant diversity present in the world's five Mediterranean-type climate (MTC) regions, all of which are considered to be biodiversity hotspots. Comprising the Mediterranean Basin, California, central Chile, the Cape Region of South Africa, and southwestern Australia, these regions share the unusual climatic regime of mild wet winters and warm dry summers. Despite their small extent, covering only about 2.
View Article and Find Full Text PDFTrait divergence between populations is considered an adaptive response to different environments, but to what extent this response is accompanied by genetic differentiation is less clear since it may be phenotypic plasticity. In this study, we analyzed phenotypic variation between two Banksia attenuata growth forms, lignotuberous (shrub) and epicormic resprouting (tree), in fire-prone environments to identify the environmental factors that have driven this phenotypic divergence. We linked genotype with phenotype and traced candidate genes using differential gene expression analysis.
View Article and Find Full Text PDFDespite long-time awareness of the importance of the location of buds in plant biology, research on belowground bud banks has been scant. Terms such as lignotuber, xylopodium and sobole, all referring to belowground bud-bearing structures, are used inconsistently in the literature. Because soil efficiently insulates meristems from the heat of fire, concealing buds below ground provides fitness benefits in fire-prone ecosystems.
View Article and Find Full Text PDFSix Hakea species varying greatly in seed size were selected for cotyledon damage experiments. The growth of seedlings with cotyledons partially or completely removed was monitored over 90 days. All seedlings perished by the fifth week when both cotyledons were removed irrespective of seed size.
View Article and Find Full Text PDFTrends Plant Sci
April 2017
Fire as a major evolutionary force has been disputed because it is considered to lack supporting evidence. If a trait has evolved in response to selection by fire then the environment of the plant must have been fire-prone before the appearance of that trait. Using outcomes of trait assignments applied to molecular phylogenies for fire-stimulated flowering, seed-release, and germination, in this Opinion article we show that fire-proneness precedes, or rarely coincides with, the evolution of these fire-adapted traits.
View Article and Find Full Text PDFFire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world's most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6-8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma).
View Article and Find Full Text PDFNew Caledonia and New Zealand belong to the now largely submerged continent Zealandia. Their high levels of endemism and species richness are usually considered the result of transoceanic dispersal events followed by diversification after they re-emerged from the Pacific Ocean in the mid-Cenozoic. We explore the origin and evolutionary history of Beauprea (Proteaceae), which is now endemic to New Caledonia but was once spread throughout eastern Gondwana, including New Zealand.
View Article and Find Full Text PDFBackground Root clusters are bunches of hairy rootlets produced by >1800 species in nine families. The possible involvement of micro-organisms in root-cluster formation has produced conflicting results over the last 40 years. In addition, any effect of rhizobacteria on overall plant growth of root-cluster-bearing species remains unknown.
View Article and Find Full Text PDFSeed size is a key functional trait that affects plant fitness at the seedling stage and may vary greatly with species fruit size, growth form and fecundity. Using structural equation modelling (SEM) and correlated trait evolution analysis, we investigated the interaction network between seed size and fecundity, postfire regeneration strategy, fruit size, plant height and serotiny (on-plant seed storage) among 82 species of the woody shrub genus, Hakea, with a wide spectrum of seed sizes (2-500 mg). Seed size is negatively correlated with fecundity, while fire-killed species (nonsprouters) produce more seeds than resprouters though they are of similar size.
View Article and Find Full Text PDF