Ponatinib is a tyrosine kinase inhibitor (TKI) directed against BCR-ABL1 which is successfully used in patients with + chronic myeloid leukemia (CML). However, compound mutations may develop during therapy in these patients and may lead to drug resistance. Asciminib is a novel drug capable of targeting most BCR-ABL1 mutant-forms, including BCR-ABL1, but remains ineffective against most BCR-ABL1+ compound mutation-bearing sub-clones.
View Article and Find Full Text PDFMyeloma bone disease is a major complication in multiple myeloma affecting quality of life and survival. It is characterized by increased activity of osteoclasts, bone resorbing cells. Myeloma microenvironment promotes excessive osteoclastogenesis, a process of production of osteoclasts from their precursors, monocytes.
View Article and Find Full Text PDFIntroduction of the proteasome inhibitor bortezomib has dramatically improved clinical outcomes in multiple myeloma. However, most patients become refractory to bortezomib-based therapies. On the molecular level, development of resistance to bortezomib in myeloma cells is accompanied by complex metabolic changes resulting in increased protein folding capacity, and less dependency on the proteasome.
View Article and Find Full Text PDFBackground: Low survival rates in metastatic high-grade osteosarcoma (HGOS) have remained stagnant for the last three decades. This study aims to investigate the role of aminopeptidase N (ANPEP) in HGOS progression and its targeting with a novel lipophilic peptidase-enhanced cytotoxic compound melphalan flufenamide (melflufen) in HGOS.
Methods: Meta-analysis of publicly available gene expression datasets was performed to determine the impact of gene expression on metastasis-free survival of HGOS patients.
Purpose: Ponatinib is the only approved tyrosine kinase inhibitor (TKI) suppressing BCR-ABL1-mutated cells in chronic myeloid leukemia (CML). However, due to side effects and resistance, BCR-ABL1-mutated CML remains a clinical challenge. Hydroxyurea (HU) has been used for cytoreduction in CML for decades.
View Article and Find Full Text PDFIn chronic myeloid leukemia (CML), resistance against second-generation tyrosine kinase inhibitors (TKI) remains a serious clinical challenge, especially in the context of multi-resistant BCR-ABL1 mutants, such as T315I. Treatment with ponatinib may suppress most of these mutants, including T315I, but is also associated with a high risk of clinically relevant side effects. We screened for alternative treatment options employing available tyrosine kinase inhibitors (TKI) in combination.
View Article and Find Full Text PDFIn chronic myeloid leukemia, resistance against BCR-ABL1 tyrosine kinase inhibitors can develop because of mutations, activation of additional pro-oncogenic pathways, and stem cell resistance. Drug combinations covering a broad range of targets may overcome resistance. CDDO-Me (bardoxolone methyl) is a drug that inhibits the survival of leukemic cells by targeting different pro-survival molecules, including STAT3.
View Article and Find Full Text PDFPoint mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs.
View Article and Find Full Text PDFIdentification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future.
View Article and Find Full Text PDFFlexible adaptation to environmental stress is vital for bacteria. An energy-efficient post-transcriptional stress response mechanism in Escherichia coli is governed by the toxin MazF. After stress-induced activation the endoribonuclease MazF processes a distinct subset of transcripts as well as the 16S ribosomal RNA in the context of mature ribosomes.
View Article and Find Full Text PDFIn Gram-negative bacteria, the multi-domain protein S1 is essential for translation initiation, as it recruits the mRNA and facilitates its localization in the decoding centre. In sharp contrast to its functional importance, S1 is still lacking from the high-resolution structures available for Escherichia coli and Thermus thermophilus ribosomes and thus the molecular mechanism governing the S1-ribosome interaction has still remained elusive. Here, we present the structure of the N-terminal S1 domain D1 when bound to the ribosome at atomic resolution by using a combination of NMR, X-ray crystallography and cryo-electron microscopy.
View Article and Find Full Text PDFTranslation of the mRNA-encoded genetic information into proteins is catalyzed by the intricate ribonucleoprotein machine, the ribosome. Historically, the bacterial ribosome is viewed as an unchangeable entity, constantly equipped with the entire complement of RNAs and proteins. Conversely, several lines of evidence indicate the presence of functional selective ribosomal subpopulations that exhibit variations in the RNA or the protein components and modulate the translational program in response to environmental changes.
View Article and Find Full Text PDFDespite of the high resolution structure available for the E. coli ribosome, hitherto the structure and localization of the essential ribosomal protein S1 on the 30 S subunit still remains to be elucidated. It was previously reported that protein S1 binds to the ribosome via protein-protein interaction at the two N-terminal domains.
View Article and Find Full Text PDFEscherichia coli (E. coli) mazEF is a stress-induced toxin-antitoxin (TA) module. The toxin MazF is an endoribonuclease that cleaves single-stranded mRNAs at ACA sequences.
View Article and Find Full Text PDF