In this work, we present the experimental investigation on the contact resistance of graphene/single-walled carbon nanotube (SWCNT) junction using transfer length method with the simple equivalent circuit model. We find that p-n like junctions are formed in graphene/SWCNT transistors, and the contact resistance in the junction is observed to be ~ 494 and ~ 617 kΩ in case of metallic SWCNT (m-SWCNT) and semiconducting SWCNT (s-SWCNT), respectively. In addition, the contact resistance increases from 617 to 2316 kΩ as V increases from - 30 to - 10 V.
View Article and Find Full Text PDFMicropatterns of fibroblast and hippocampal neurons are generated on a single-layered graphene substrate. A large-area (1 cm × 1 cm) graphene film on Si/SiO2 is functionalized by surface-initiated ATRP of non-biofouling oligo(ethylene glycol) methacrylate, after grafting of the polymerization initiator bearing α-bromoisobutylate via photoreaction of the perfluorophenyl azide group. The microcontact printing-assisted spatio-selective reaction, after chemical activation of the terminal hydroxyl group of oligo(ethylene glycol) in the polymeric film, is utilized to generate the patterns of fibroblast and hippocampal neurons.
View Article and Find Full Text PDF