Iridium single atom catalysts are promising oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane water electrolysis (PEMWE), as they can reduce the reliance on costly Ir in the OER catalysts. However, their practical application is hindered by their limited stability during PEMWE operation. Herein, we report on the activation of Ir-doped CoMnO in acidic electrolyte that leads to enhanced activity and stability in acidic OER for long-term PEMWE operation.
View Article and Find Full Text PDFEnzymes, composed of earth-abundant elements, outperform conventional heterogeneous photocatalysts in hydrogen production due to the dual-site cooperation between adjacent active metal sites and proton-transferring ligands. However, the realization of such dual-site cooperation in heterogeneous catalytic systems is hindered by the challenges in the precise construction of cooperative active sites. In this study, we present the design of a structurally tuned metal-organic framework (MOF) photocatalyst that incorporates cooperative Brønsted acid-single atom catalytic sites.
View Article and Find Full Text PDFOxygen vacancies and their correlation with the nanomagnetism and electronic structure are crucial for applications in dilute magnetic semiconductors design applications. Here, we report on cobalt single atom-incorporated titanium dioxide (TiO) monodispersed nanoparticles synthesized using a thermodynamic redistribution strategy. Using advanced synchrotron-based X-ray techniques and simulations, we find trivalent titanium is absent, indicating trivalent cations do not influence ferromagnetic (FM) stability.
View Article and Find Full Text PDFThe electrochemical reduction of CO in acidic media offers the advantage of high carbon utilization, but achieving high selectivity to C products at a low overpotential remains a challenge. We identified the chemical instability of oxide-derived Cu catalysts as a reason that advances in neutral/alkaline electrolysis do not translate to acidic conditions. In acid, Cu ions leach from Cu oxides, leading to the deactivation of the C-active sites of Cu nanoparticles.
View Article and Find Full Text PDFAchieving atomic precision in nanostructured materials is essential for comprehending formation mechanisms and elucidating structure-property relationships. Within the realm of nanoscience and technology, atomically precise ligand-protected noble metal nanoclusters (NCs) have emerged as a rapidly expanding area of interest. These clusters manifest quantum confinement-induced optoelectronic, photophysical, and chemical properties, along with remarkable catalytic capabilities.
View Article and Find Full Text PDFTransition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis.
View Article and Find Full Text PDFImproving the kinetics and selectivity of CO/CO electroreduction to valuable multi-carbon products is a challenge for science and is a requirement for practical relevance. Here we develop a thiol-modified surface ligand strategy that promotes electrochemical CO-to-acetate. We explore a picture wherein nucleophilic interaction between the lone pairs of sulfur and the empty orbitals of reaction intermediates contributes to making the acetate pathway more energetically accessible.
View Article and Find Full Text PDFDeveloping active and stable atomically dispersed catalysts is challenging because of weak non-specific interactions between catalytically active metal atoms and supports. Here we demonstrate a general method for synthesizing atomically dispersed catalysts via photochemical defect tuning for controlling oxygen-vacancy dynamics, which can induce specific metal-support interactions. The developed synthesis method offers metal-dynamically stabilized atomic catalysts, and it can be applied to reducible metal oxides, including TiO, ZnO and CeO, containing various catalytically active transition metals, including Pt, Ir and Cu.
View Article and Find Full Text PDFPathol Res Pract
January 2024
The present study aimed to investigate the clinicopathological and prognostic implications of the cribriform pattern in lung adenocarcinoma through a meta-analysis. The estimated rates of cribriform pattern in lung adenocarcinomas were investigated. The correlations between cribriform pattern and clinicopathological characteristics, including genetic alterations and prognosis were evaluated.
View Article and Find Full Text PDFThe electrochemical reduction of CO in acidic conditions enables high single-pass carbon efficiency. However, the competing hydrogen evolution reaction reduces selectivity in the electrochemical reduction of CO, a reaction in which the formation of CO, and its ensuing coupling, are each essential to achieving multicarbon (C) product formation. These two reactions rely on distinct catalyst properties that are difficult to achieve in a single catalyst.
View Article and Find Full Text PDFSingle-atom photocatalysis has shown potential in various single-step organic transformations, but its use in multistep organic transformations in one reaction systems has rarely been achieved. Herein, we demonstrate atomic site orthogonality in the M/CN system (where M = Pd or Ni), enabling a cascade photoredox reaction involving oxidative and reductive reactions in a single system. The system utilizes visible-light-generated holes and electrons from CN, driving redox reactions (e.
View Article and Find Full Text PDFStoring solar energy in chemical bonds aided by heterogeneous photocatalysis is desirable for sustainable energy conversion. Despite recent progress in designing highly active photocatalysts, inefficient solar energy and mass transfer, the instability of catalysts and reverse reactions impede their practical large-scale applications. Here we tackle these challenges by designing a floatable photocatalytic platform constructed from porous elastomer-hydrogel nanocomposites.
View Article and Find Full Text PDFVisible-light-driven organic transformations are of great interest in synthesizing valuable fine chemicals under mild conditions. The merger of heterogeneous photocatalysts and transition metal catalysts has recently drawn much attention due to its versatility for organic transformations. However, these semi-heterogenous systems suffered several drawbacks, such as transition metal agglomeration on the heterogeneous surface, hindering further applications.
View Article and Find Full Text PDFOxygen vacancies and their correlation with the electronic structure are crucial to understanding the functionality of TiO nanocrystals in material design applications. Here, we report spectroscopic investigations of the electronic structure of anatase TiO nanocrystals by employing hard and soft X-ray absorption spectroscopy measurements along with the corresponding model calculations. We show that the oxygen vacancies significantly transform the Ti local symmetry by modulating the covalency of titanium-oxygen bonds.
View Article and Find Full Text PDFPd is one of the most effective catalysts for the electrochemical reduction of CO to formate, a valuable liquid product, at low overpotential. However, the intrinsically high CO affinity of Pd makes the surface vulnerable to CO poisoning, resulting in rapid catalyst deactivation during CO electroreduction. Herein, we utilize the interaction between metals and metal-organic frameworks to synthesize atomically dispersed Au on tensile-strained Pd nanoparticles showing significantly improved formate production activity, selectivity, and stability with high CO tolerance.
View Article and Find Full Text PDFA complimentary biomarker test that can be used in combination with LDCT for lung cancer screening is highly desirable to improve the diagnostic capacity of LDCT and reduce the false-positive rates. Most importantly, the stage I lung cancer detection rate can be dramatically increased by the simultaneous use of a biomarker test with LDCT. The present study was conducted to evaluate 9G test Cancer/Lung's sensitivity and specificity in detecting Stage 0~IV lung cancer.
View Article and Find Full Text PDFCompared to nanostructured platinum (Pt) catalysts, ordered Pt-based intermetallic nanoparticles supported on a carbon substrate exhibit much enhanced catalytic performance, especially in fuel cell electrocatalysis. However, direct synthesis of homogeneous intermetallic alloy nanocatalysts on carbonaceous supports with high loading is still challenging. Herein, we report a novel synthetic strategy to directly produce highly dispersed MPt alloy nanoparticles (M = Fe, Co, or Ni) on various carbon supports with high catalyst loading.
View Article and Find Full Text PDFIntegrated with heat-generating devices, a Li-ion battery (LIB) often operates at 20-40 °C higher than the ordinary working temperature. Although macroscopic investigation of the thermal contribution has shown a significant reduction in the LIB performance, the molecular level structural and chemical origin of battery aging in a mild thermal environment has not been elucidated. On the basis of the combined experiments of the electrochemical measurements, Cs-corrected electron microscopy, and in situ analyses, we herein provide operando structural and chemical insights on how a mild thermal environment affects the overall battery performance using anatase TiO as a model intercalation compound.
View Article and Find Full Text PDFDespite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, HO can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co-N moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes.
View Article and Find Full Text PDFThe reversible and cooperative activation process, which includes electron transfer from surrounding redox mediators, the reversible valence change of cofactors and macroscopic functional/structural change, is one of the most important characteristics of biological enzymes, and has frequently been used in the design of homogeneous catalysts. However, there are virtually no reports on industrially important heterogeneous catalysts with these enzyme-like characteristics. Here, we report on the design and synthesis of highly active TiO photocatalysts incorporating site-specific single copper atoms (Cu/TiO) that exhibit a reversible and cooperative photoactivation process.
View Article and Find Full Text PDFWe report a facile two-step method to synthesize nanostructured P2-Na2/3MnO2via ligand exchange and intercalation of sodium ions into ultrathin manganese oxide nanoplates. Sodium storage performance of the synthesized material shows a high capacity (170 mA h g-1) and an excellent rate performance.
View Article and Find Full Text PDFVarious kinds of nanostructured materials have been extensively investigated as lithium ion battery electrode materials derived from their numerous advantageous features including enhanced energy and power density and cyclability. However, little is known about the microscopic origin of how nanostructures can enhance lithium storage performance. Herein, we identify the microscopic origin of enhanced lithium storage in anatase TiO nanostructure and report a reversible and stable route to achieve enhanced lithium storage capacity in anatase TiO.
View Article and Find Full Text PDFBackground: Uncontrolled diabetes, unlike controlled diabetes, is associated with an impaired immune response. However, little is known about the impact of the status of diabetes control on clinical features and treatment outcomes in patients with pulmonary TB (PTB). We conducted this study to evaluate whether the status of diabetes control influences clinical manifestations and treatment responses in PTB.
View Article and Find Full Text PDFBackground: Multiple organ failure, wasting, increased morbidity, and mortality following acute illness complicates the health span of patients surviving sepsis. Persistent inflammation has been implicated, and it is proposed that insulin signaling contributes to persistent inflammatory signaling during the recovery phase after sepsis. However, mechanisms are unknown and suitable pre-clinical models are lacking.
View Article and Find Full Text PDF