Publications by authors named "Byounggook Cho"

Direct lineage reprogramming into dopaminergic (DA) neurons holds great promise for the more effective production of DA neurons, offering potential therapeutic benefits for conditions such as Parkinson's disease. However, the reprogramming pathway for fully reprogrammed DA neurons remains largely unclear, resulting in immature and dead-end states with low efficiency. In this study, using single-cell RNA sequencing, the trajectory of reprogramming DA neurons at multiple time points, identifying a continuous pathway for their reprogramming is analyzed.

View Article and Find Full Text PDF

Brain organoids have become a valuable tool for studying human brain development, disease modeling, and drug testing. However, generating brain organoids with mature neurons is time-intensive and often incomplete, limiting their utility in studying age-related neurodegenerative diseases such as Alzheimer's disease (AD). Here, we report the generation of 3D brain organoids from human fibroblasts through direct reprogramming, with simplicity, efficiency, and reduced variability.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with progressive neuronal degeneration as amyloid-beta (Aβ) and tau proteins accumulate in the brain. Glial cells were recently reported to play an important role in the development of AD. However, little is known about the role of oligodendrocytes in AD pathogenesis.

View Article and Find Full Text PDF

Background: The ε4 allele of apolipoprotein E (APOE ε4) is the strongest known genetic risk factor for late-onset Alzheimer's disease (AD), associated with amyloid pathogenesis. However, it is not clear how APOE ε4 accelerates amyloid-beta (Aβ) deposition during the seeding stage of amyloid development in AD patient neurons.

Methods: AD patient induced neurons (iNs) with an APOE ε4 inducible system were prepared from skin fibroblasts of AD patients.

View Article and Find Full Text PDF

Autism spectrum disorders (ASDs) are common neurodevelopmental disorders characterized by deficits in social interactions and communication, restricted interests, and repetitive behaviors. Despite extensive study, the molecular targets that control ASD development remain largely unclear. Here, we report that the dormancy of quiescent neural stem cells (qNSCs) is a therapeutic target for controlling the development of ASD phenotypes driven by Shank3 deficiency.

View Article and Find Full Text PDF

An increasing number of studies have indicated that alterations in gut microbiota affect brain function, including cognition and memory ability, via the gut-brain axis. In this study, we aimed to determine the protective effect of Bifidobacterium bifidum BGN4 (B. bifidum BGN4) and Bifidobacterium longum BORI (B.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated gene-editing technology has gained attention as a new therapeutic method for intractable diseases. However, the use of CRISPR/Cas9 for cardiac conditions such as myocardial infarction remains challenging due to technical and biological barriers, particularly difficulties in delivering the system and targeting genes in the heart. In the present study, we demonstrated the in vivo efficacy of the CRISPR/Cas9 magnetoplexes system for therapeutic genome editing in myocardial infarction.

View Article and Find Full Text PDF

Adult neurogenesis is the lifelong process by which new neurons are generated in the dentate gyrus. However, adult neurogenesis capacity decreases with age, and this decrease is closely linked to cognitive and memory decline. Our study demonstrated that electromagnetized gold nanoparticles (AuNPs) promote adult hippocampal neurogenesis, thereby improving cognitive function and memory consolidation in aged mice.

View Article and Find Full Text PDF

DNA demethylation is characterized by the loss of methyl groups from 5-methylcytosine, and this activity is involved in various biological processes in mammalian cell development and differentiation. In particular, dynamic DNA demethylation in the process of somatic cell reprogramming is required for successful iPSC generation. In the present study, we reported the role of Rad50 in the DNA demethylation process during somatic cell reprogramming.

View Article and Find Full Text PDF

N-methyladenosine (mA), a conserved epitranscriptomic modification of eukaryotic mRNA (mRNA), plays a critical role in a variety of biological processes. Here, we report that mA modification plays a key role in governing direct lineage reprogramming into induced neuronal cells (iNs). We found that mA modification is required for the remodeling of specific mRNAs required for the neuronal direct conversion.

View Article and Find Full Text PDF

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has emerged as a powerful technology, with the potential to generate transgenic animals. Particularly, efficient and precise genetic editing with CRISPR/Cas9 offers immense prospects in various biotechnological applications. Here, we report that the histone deacetylase inhibitor valproic acid (VPA) significantly increases the efficiency of CRISPR/Cas9-mediated gene editing in mouse embryonic stem cells and embryos.

View Article and Find Full Text PDF

Mortality caused by age-related bone fractures or osteoporosis is steadily increasing worldwide as the population ages. The pace of the development of bone regeneration engineering to treat bone fractures has consequently increased in recent years. A range of techniques for bone regeneration, such as immunotherapy, allografts, and hydrogel therapy, have been devised.

View Article and Find Full Text PDF

In vivo gene editing in post-mitotic neurons of the adult brain may be a useful strategy for treating neurological diseases. Here, we develop CRISPR-Cas9 nanocomplexes and show they were effective in the adult mouse brain, with minimal off-target effects. Using this system to target Bace1 suppressed amyloid beta (Aβ)-associated pathologies and cognitive deficits in two mouse models of Alzheimer's disease.

View Article and Find Full Text PDF