Despite significant advancements made in cardiovascular stents, restenosis, thrombosis, biocompatibility, and clinical complications remain a matter of concern. Herein, we report a biodegradable Mg alloy stent with a dual effect of the drug (Paclitaxel) and growth factor (VEGF) release. To mitigate the fast degradation of Mg alloy, inorganic and organic coatings were formed on the alloy surface.
View Article and Find Full Text PDFMagnesium and its alloys are widely applied biomaterials due to their biodegradability and biocompatibility. However, rapid degradation and hydrogen gas evolution hinder its applicability on a commercial scale. In this study, we developed an Mg alloy bone plate for bone remodeling and support after a fracture.
View Article and Find Full Text PDFThe present work addresses the performance of polycaprolactone (PCL) coating on fluoride treated (MgF2) biodegradable ZK60 magnesium alloy (Mg) for biomedical application. MgF2 conversion layer was first produced by immersing Mg alloy substrate in hydrofluoric acid solution. The outer PCL coating was then prepared using dip coating technique.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
July 2018
Background: Magnesium (Mg)-based alloys are considered to be promising materials for implant application due to their excellent biocompatibility, biodegradability, and mechanical properties close to bone. However, low corrosion resistance and fast degradation are limiting their application. Mg-Ca alloys have huge potential owing to a similar density to bone, good corrosion resistance, and as Mg is essential for Ca incorporation into bone.
View Article and Find Full Text PDF