Mycobacterium abscessus, a member of the group of non-tuberculous mycobacteria, has been identified as an emerging pulmonary pathogen in humans. However, little is known about the protective immune response of antigenpresenting cells, such as dendritic cells (DCs), which guard against M. abscessus infection.
View Article and Find Full Text PDFA key factor in dendritic cell (DC)-based tumor immunotherapy is the identification of an immunoadjuvant capable of inducing DC maturation to enhance cellular immunity. The efficacy of a 50S ribosomal protein L7/L12 (rplL) from Mycobacterium tuberculosis Rv0652, as an immunoadjuvant for DC-based tumor immunotherapy, and its capacity for inducing DC maturation was investigated. In this study, we showed that Rv0652 is recognized by Toll-like receptor 4 (TLR4) to induce DC maturation, and pro-inflammatory cytokine production (TNF-alpha, IL-1beta, and IL-6) that is partially modulated by both MyD88 and TRIF signaling pathways.
View Article and Find Full Text PDF1-Aminocyclopropane-1-carboxylate (ACC) deaminase is commonly produced by plant growth-promoting rhizobacteria (PGPR) and has been suggested to facilitate the growth and stress tolerance of hosts via a reduction in levels of ethylene. However, the regulatory mechanism of ACC deaminase (AcdS) protein within host plant cells is largely unknown. Here, we demonstrated beneficial effects and post-translational modification of PGPR-originated AcdS proteins in plants.
View Article and Find Full Text PDFBacterial 1-aminocyclopropane-1-carboxlyate (ACC) deaminase (AcdS) is an enzyme that cleaves ACC, a precursor of the plant hormone ethylene, into α-ketobutyrate and ammonia. The acdS gene was cloned from Pseudomonas fluorescens, which was capable of improving the seedling of Chinese cabbage under salinity condition. The recombinant AcdS (rAcdS) exhibited optimal activity at pH 8.
View Article and Find Full Text PDFIn this study, we show that Mycobacterium avium subsp. paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-α, and IL-1β) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4.
View Article and Find Full Text PDFBackground: With the increasing resistance of malaria parasites to available drugs, there is an urgent demand to develop new anti-malarial drugs. Calpain inhibitor, ALLN, is proposed to inhibit parasite proliferation by suppressing haemoglobin degradation. This provides Plasmodium calpain as a potential target for drug development.
View Article and Find Full Text PDFPf-calpain, a cysteine protease of Plasmodium falciparum, is believed to be one of the central mediators for essential parasitic activity. However, the roles of calpain on parasitic activity have not been determined in P. falciparum.
View Article and Find Full Text PDFExcessive release of proinflammatory cytokines by activated microglia can cause neurotoxicity in neurodegenerative diseases. We found that Brevicompanine E (BE), isolated from a deep ocean sediment derived fungus Penicillium sp., inhibited lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX-2) production in microglia.
View Article and Find Full Text PDFThe biological understanding of malaria parasites has increased considerably over the past two decades with the discovery of many potential targets for the development of new antimalarial drugs. Calpain, a cysteine protease of Plasmodium falciparum, is believed to be a central mediator essential for parasitic activity. However, the utility of calpain as a potential anti-malarial target in P.
View Article and Find Full Text PDFTranscriptional dysregulation and aberrant chromatin remodeling are central features in the pathology of Huntington's disease (HD). In order to more fully characterize these pathogenic events, an assessment of histone profiles and associated gene changes were performed in transgenic N171-82Q (82Q) and R6/2 HD mice. Analyses revealed significant chromatin modification, resulting in reduced histone acetylation with concomitant increased histone methylation, consistent with findings observed in HD patients.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2006
Chromatin remodeling and transcription regulation are tightly controlled under physiological conditions. It has been suggested that altered chromatin modulation and transcription dysfunction may play a role in the pathogenesis of Huntington's disease (HD). Increased histone methylation, a well established mechanism of gene silencing, results in transcriptional repression.
View Article and Find Full Text PDF