Publications by authors named "Byoung Sam Ko"

Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production.

View Article and Find Full Text PDF

To construct Candida tropicalis strains that produce a high yield of xylitol with no requirement for co-substrates, we engineered the yeast with an attenuated xylitol dehydrogenase (XDH) and then assessed the efficiency of xylitol production The mutants, strains XDH-5 (with only one copy of the XDH gene), and ARSdR-16 (with a mutated XDH gene) showed 70 and 40% of wild type (WT) XDH activity, respectively. Conversions of xylose to xylitol by WT, XDH-5, and ARSdR-16 were 62, 64, and 75%, respectively, with productivities of 0.52, 0.

View Article and Find Full Text PDF

Induction of xylitol dehydrogenase of Candida tropicalis ATCC 20913 by various carbon sources was investigated. The enzyme activity was induced when the yeast was grown on l-arabinose and d-xylose. A novel gene encoding the enzyme was cloned and characterized.

View Article and Find Full Text PDF

The effects of glycerol and the oxygen transfer rate on the xylitol production rate by a xylitol dehydrogenase gene (XYL2)-disrupted mutant of Candida tropicalis were investigated. The mutant produced xylitol near the almost yield of 100% from D: -xylose using glycerol as a co-substrate for cell growth and NADPH regeneration: 50 g D: -xylose l(-1) was completely converted into xylitol when at least 20 g glycerol l(-1) was used as a co-substrate. The xylitol production rate increased with the O(2) transfer rate until saturation and it was not necessary to control the dissolved O(2) tension precisely.

View Article and Find Full Text PDF

Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source.

View Article and Find Full Text PDF