To realize economically feasible electrochemical CO conversion, achieving a high partial current density for value-added products is particularly vital. However, acceleration of the hydrogen evolution reaction due to cathode flooding in a high-current-density region makes this challenging. Herein, we find that partially ligand-derived Ag nanoparticles (Ag-NPs) could prevent electrolyte flooding while maintaining catalytic activity for CO electroreduction.
View Article and Find Full Text PDFThe cartilage acellular matrix (CAM) derived from porcine cartilage, which does not induce significant inflammation and provides an environment conducive for cell growth and differentiation, is a promising biomaterial candidate for scaffold fabrication. However, the CAM has a short period in vivo, and the in vivo maintenance is not controlled. Therefore, this study is aimed at developing an injectable hydrogel scaffold using a CAM.
View Article and Find Full Text PDFCarbon capture and utilization technology has been studied for its practical ability to reduce CO emissions and enable economical chemical production. The main challenge of this technology is that a large amount of thermal energy must be provided to supply high-purity CO and purify the product. Herein, we propose a new concept called reaction swing absorption, which produces synthesis gas (syngas) with net-zero CO emission through direct electrochemical CO reduction in a newly proposed amine solution, triethylamine.
View Article and Find Full Text PDFGastric cancer (GC) is one of the most common and lethal types of cancer affecting over one million people, leading to 768,793 deaths globally in 2020 alone. The key for improving the survival rate lies in reliable screening and early diagnosis. Existing techniques including barium-meal gastric photofluorography and upper endoscopy can be costly and time-consuming and are thus impractical for population screening.
View Article and Find Full Text PDFThe electrosynthesis of formate from CO can mitigate environmental issues while providing an economically valuable product. Although stannic oxide is a good catalytic material for formate production, a metallic phase is formed under high reduction overpotentials, reducing its activity. Here, using a fluorine-doped tin oxide catalyst, a high Faradaic efficiency for formate (95% at 100 mA cm) and a maximum partial current density of 330 mA cm (at 400 mA cm) is achieved for the electroreduction of CO.
View Article and Find Full Text PDFComputational calculations and experimental studies reveal that the CoOOH phase and the intermediate-spin (IS) state are the key factors for realizing efficient Co-based electrocatalysts for the oxygen evolution reaction (OER). However, according to thermodynamics, general cobalt oxide converts to the CoO phase under OER condition, retarding the OER kinetics. Herein, we demonstrate a simple and scalable strategy to fabricate electrodes with maintaining Fe-CoOOH phase and an IS state under the OER.
View Article and Find Full Text PDFThe use of chemoattractants to promote endogenous stem cell-based in situ tissue regeneration has recently garnered much attention. This study is the first to assess the endogenous stem cell migration using a newly discovered substance P (SP) analog (SP1) by molecular dynamics simulations as an efficient chemoattractant. Further, a novel strategy based on electrostatic interaction using cationic chitosan (Ch) and anionic hyaluronic acid (HA) to prepare an SP1-loaded injectable C/H formulation without SP1 loss is developed.
View Article and Find Full Text PDFThe voltage reversal of water electrolyzers and fuel cells induces a large positive potential on the hydrogen electrodes, followed by severe system degradation. Applying a reversible multifunctional electrocatalyst to the hydrogen electrode is a practical solution. Ir exhibits excellent catalytic activity for hydrogen evolution reactions (HER), and hydrogen oxidation reactions (HOR), yet irreversibly converts to amorphous IrO at potentials > 0.
View Article and Find Full Text PDFAlthough solution-processed Cu(In,Ga)(S,Se) (CIGS) absorber layers can potentially enable the low-cost and large-area production of highly stable electronic devices, they have rarely been applied in photodetector applications. In this work, we present a near-infrared photodetector functioning at 980 nm based on solution-processed CIGS with a potassium-induced bandgap grading structure and chalcopyrite grain growth. The incorporation of potassium in the CIGS film promotes Se uptake in the bulk of the film during the chalcogenization process, resulting in a bandgap grading structure with a wide space charge region that allows improved light absorption in the near-infrared region and charge carrier separation.
View Article and Find Full Text PDFCu(In,Ga)(S,Se) (CIGS) thin-film solar cells have attracted considerable interest in the field of photovoltaic devices due to their high efficiency and great potential for diverse applications. While CdS has been the most favorable n-type semiconductor because of its excellent lattice-match and electronic band alignment with p-type CIGS, its narrow optical band gap (∼2.4 eV) has limited light absorption in underlying CIGS absorber films.
View Article and Find Full Text PDFHERV-H LTR -associating 2 (HHLA2) is a recently discovered member of the B7-family of immune checkpoint molecules that is overexpressed in several types of cancer. The aim of the present study was to investigate the expression of HHLA2 in cervical adenocarcinoma (AC) and the relationship between its expression and clinicopathological factors to assess its use as a potential marker for AC prognosis.This study included 76 patients diagnosed with cervical AC.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Solution-processed chalcopyrite solar cells can be economically produced on a large scale; however, for them to be commercially viable, their low efficiency and detrimental processing have to be overcome. To this end, extensive research efforts have been devoted to boost device efficiency and develop benign solution processes. In this review, relevant processes are categorized into molecular-based and particulate-based solution processes, and progress is evaluated in terms of device performance and processing.
View Article and Find Full Text PDFSolution-processed Cu(In,Ga)(S,Se) (CIGS) has a great potential for the production of large-area photovoltaic devices at low cost. However, CIGS solar cells processed from solution exhibit relatively lower performance compared to vacuum-processed devices because of a lack of proper composition distribution, which is mainly instigated by the limited Se uptake during chalcogenization. In this work, a unique potassium treatment method is utilized to improve the selenium uptake judiciously, enhancing grain sizes and forming a wider bandgap minimum region.
View Article and Find Full Text PDFSingle-atom catalysts (SACs) possess the potential to achieve unique catalytic properties and remarkable catalytic mass activity by utilizing low-coordination and unsaturated active sites. However, smaller particles tend to aggregate into clusters or particles owing to their high surface energy. In addition, support materials that have strong interactions with isolated metal atoms, extremely large surface areas, and electrochemical stability are required.
View Article and Find Full Text PDFAn injectable, click-crosslinking (Cx) hyaluronic acid (HA) hydrogel scaffold modified with a bone morphogenetic protein-2 (BMP-2) mimetic peptide (BP) was prepared for bone tissue engineering applications. The injectable click-crosslinking HA formulation was prepared from HA-tetrazine (HA-Tet) and HA-cyclooctene (HA-TCO). The Cx-HA hydrogel scaffold was prepared simply by mixing HA-Tet and HA-TCO.
View Article and Find Full Text PDFTo protect unwanted tissue adhesions occurring after surgeries, we aimed to fabricate an anti-adhesive film using cartilage acellular matrix (CAM) with anti-vascular inhibition activity. Additionally, to fabricate anti-adhesive films with tunable swelling, mechanical, and biodegradation properties, a biodegradable polyester (PEP) with N-hydroxysuccinimide (NHS) in the chain end position was synthesized as a cross-linker. CAM/PEP (CP) films were prepared with various CAM: PEP ratios in the wide size with repeatable reproducibility, and then, cross-linked CP (Cx-CP) were obtained by the interpenetrating cross-linking reaction between the amine group on CAM and the NHS group on PEP cross-linkers under thermal treatment.
View Article and Find Full Text PDFFabrication of Cu(In,Ga)(S,Se) (CIGSSe) absorber films from environmentally friendly solutions under ambient air conditions for use in solar cells has shown promise for the low-cost mass production of CIGSSe solar cells. However, the limited power conversion efficiency (PCE) of these solar cells compared with their vacuum-processed counterparts has been a critical setback to their practical applications. This study aims to fabricate solution-processed CIGSSe solar cells with high PCEs by incorporation of Ag into the precursor layer of the CIGSSe absorber films.
View Article and Find Full Text PDFElectrochemical oxidation processes can affect the electronic structure and activate the catalytic performance of precious-metal and transition-metal based catalysts for the oxygen evolution reaction (OER). Also there are emerging requirements to develop OER electrocatalysts under various pH conditions in order to couple with different reduction reactions. Herein, we studied the effect of pH on the electroactivation of IrNi alloy nanoparticles supported on carbon (IrNi/C) and evaluated the electrocatalytic activities of the activated IrNiO/C for water oxidation under neutral conditions.
View Article and Find Full Text PDFInjectable in situ-forming hydrogels have been used clinically in diverse biomedical applications. These hydrogels have distinct advantages such as easy management and minimal invasiveness. The hydrogels are aqueous formulations, and a simple injection at the target site replaces a traditional surgical procedure.
View Article and Find Full Text PDFThe carboxylation of hydrocarbons using CO as a one-carbon building block is an attractive route for the synthesis of carboxylic acids and their derivatives. Until now, chemical carboxylation catalyzed by organometallic nucleophiles and reductants has been generally adopted particularly for the precise selectivity control of carboxylation sites. As another approach, electrochemical carboxylation has been attempted but these carboxylation reactions are limited to only a few pathways.
View Article and Find Full Text PDFThe development of synthetic methods for monodisperse nanomaterial is of great importance in science and technology related to nanomaterials. The strong demands to prepare exceptionally monodisperse nanocrystals have made digestive-ripening one of the most sought-after size-focusing processes. Although digestive-ripening processes have been demonstrated to produce various metals and semiconductors, their applicability to oxides has rarely been studied despite various unique properties and applications of oxide nanomaterials.
View Article and Find Full Text PDFA composite solid propellant which generates high propulsive force in a short time is typically composed of an oxidizer, a metal fuel powder and a binder. Among these, the binder is an important component. The binder maintains the mechanical properties of propellant grains and endures several thermal and mechanical stresses in the engine.
View Article and Find Full Text PDFIn this work, we prepared an electrospun small intestinal submucosa/poly(ε-caprolactone)-ran-poly(l-lactide) (SIS/PCLA) sheet onto which substance P (SP) was loaded, and this was employed as a cell-free scaffold for wound healing through the mobilization of human mesenchymal stem cells (hMSCs). SP release from the SP-loaded scaffold was 42% at 12 h and 51% at 24 h due to an initial burst of SP, but after 1 day, it exhibited a linear release profile and was released at a sustained rate for 21 days. The SP-loaded SIS/PCLA sheet exhibited higher in vitro and in vivo hMSC migration than did the PCLA and SIS/PCLA sheets.
View Article and Find Full Text PDF