is a highly restricted terrestrial orchid that faces increasing endangerment owing to its habitat destruction and illegal collection. Compared to epiphytic orchids, terrestrial orchids such as have harder seed coats and more demanding in vitro germination conditions. This study aimed to develop an effective in vitro propagation system for to aid in its conservation.
View Article and Find Full Text PDFEndangered wetland plants are important as the potential keystone species and mediators for plant-soil interactions. Establishing conservation strategies for endangered plants is also prioritized because of the elevating extinction risk by human-induced wetland disturbances. The present study examined the factors controlling the incidence of , the endangered wetland plant experiencing severe habitat loss throughout Northeast Asia.
View Article and Find Full Text PDFUnder favorable moisture, temperature, and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGA-LIKE 2 (RGL2), a major repressor of germination in Arabidopsis (Arabidopsis thaliana) seeds. Analysis of seed germination phenotypes of constitutive photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling.
View Article and Find Full Text PDFThis study was conducted to evaluate the physiological and growth responses of cultured in chambers under RCP 6.0 and different light conditions. was grown in a soil-plant daylight system chamber under two treatments, a control (CO = 400 ppm) and a climate change treatment (CCT) (CO = 650 ppm, temperature = control + 3 °C), and three different shading treatments (60%, 90%, and no-shading).
View Article and Find Full Text PDFis becoming endangered, and even extinct, due to habitat destruction and illegal collection, and the development of an optimized artificial propagation system is necessary for its conservation and reintroduction. Thus, the effects of plant growth medium strength (Murashige and Skoog (MS) and Hyponex media) and the addition of activated charcoal (AC) and organic supplements on seedling growth of were investigated through in vitro seed culture. The results showed that seedling growth was higher in half-strength (1/2) media than in full-strength media.
View Article and Find Full Text PDFChanges in plant architecture, such as leaf size, leaf shape, leaf angle, plant height, and floral organs, have been major factors in improving the yield of cereal crops. Moreover, changes in grain size and weight can also increase yield. Therefore, screens for additional factors affecting plant architecture and grain morphology may enable additional improvements in yield.
View Article and Find Full Text PDFPlants maintain their internal temperature under environments with fluctuating temperatures by adjusting their morphology and architecture, an adaptive process termed thermomorphogenesis. Notably, the rhythmic patterns of plant thermomorphogenesis are governed by day-length information. However, it remains elusive how thermomorphogenic rhythms are regulated by photoperiod.
View Article and Find Full Text PDFMYB-type transcription factors (TFs) play important roles in plant growth and development, and in the responses to several abiotic stresses. In rice (Oryza sativa), the roles of MYB-related TFs in leaf senescence are not well documented. Here, we examined rice MYB TF gene OsMYB102 and found that an OsMYB102 T-DNA activation-tagged line (termed osmyb102-D), which constitutively expresses OsMYB102 under the control of four tandem repeats of the 35S promoter, and OsMYB102-overexpressing transgenic lines (35S:OsMYB102 and 35S:GFP-OsMYB102) maintain green leaves much longer than the wild-type under natural, dark-induced, and abscisic acid (ABA)-induced senescence conditions.
View Article and Find Full Text PDFCONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a multifunctional E3 ligase protein with many target proteins, is involved in diverse developmental processes throughout the plant's lifecycle, including seed germination, the regulation of circadian rhythms, photomorphogenesis, and the control of flowering time. To function, COP1 must form multimeric complexes with SUPPRESSOR OF PHYA1 (SPA1), i.e.
View Article and Find Full Text PDFCONSTANS (CO) induces the expression of FLOWERING LOCUS T (FT) in the photoperiodic pathway, and thereby regulates the seasonal timing of flowering. CO expression is induced and CO protein is stabilized by FLAVIN-BINDING KELCH REPEAT F-BOX PROTEIN 1 (FKF1) in the late afternoon, while CO is degraded by CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) during the night. These regulatory cascades were thought to act independently.
View Article and Find Full Text PDFIn Arabidopsis thaliana, CONSTANS (CO) plays an essential role in the regulation of photoperiodic flowering under long-day conditions. CO protein is stable only in the afternoon of long days, when it induces the expression of FLOWERING LOCUS T (FT), which promotes flowering. The blue-light photoreceptor FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) interacts with CO and stabilizes it by an unknown mechanism.
View Article and Find Full Text PDFUbiquitin (Ub)-conjugating enzyme (UBC, E2) receives Ub from Ub-activating enzyme (E1) and transfers it to target proteins, thereby playing a key role in Ub/26S proteasome-dependent proteolysis. UBC has been reported to be involved in tolerating abiotic stress in plants, including drought, salt, osmotic and water stresses. To isolate the genes involved in Cd tolerance, we transformed WT (wild-type) yeast Y800 with a tobacco cDNA expression library and isolated a tobacco cDNA, NtUBC1 (Ub-conjugating enzyme), that enhances cadmium tolerance.
View Article and Find Full Text PDFDrought and other abiotic stresses negatively affect plant growth and development and thus reduce productivity. The plant-specific NAM/ATAF1/2/CUC2 (NAC) transcription factors have important roles in abiotic stress-responsive signaling. Here, we show that Arabidopsis thaliana NAC016 is involved in drought stress responses; nac016 mutants have high drought tolerance, and NAC016-overexpressing (NAC016-OX) plants have low drought tolerance.
View Article and Find Full Text PDFArabidopsis flowers early under long days (LD) and late under short days (SD). The repressor of photomorphogenesis DE-ETIOLATED1 (DET1) delays flowering; det1-1 mutants flower early, especially under SD, but the molecular mechanism of DET1 regulation remains unknown. Here we examine the regulatory function of DET1 in repression of flowering.
View Article and Find Full Text PDFIn the facultative long-day (LD) plant Arabidopsis thaliana, FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) is activated by blue light and promotes flowering through the transcriptional and post-translational regulation of CONSTANS under inductive LD conditions. By contrast, the facultative short day (SD) plant rice (Oryza sativa) flowers early under inductive SD and late under non-inductive LD conditions; the regulatory function of OsFKF1 remains elusive. Here we show that osfkf1 mutants flower late under SD, LD and natural LD conditions.
View Article and Find Full Text PDFDuring leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid.
View Article and Find Full Text PDFWe cloned a plant gene, Ntcyc07, conferring arsenite tolerance by expressing a tobacco expression library in WT yeast (Y800). Expression of Ntcyc07 increased the tolerance to As(III) and decreased its accumulation, suggesting that the enhanced As(III) tolerance resulted from a reduction of the intracellular arsenic level. Interestingly, expression of Ntcyc07 increased the expression of the As(III) export carrier ACR3, but repressed that of As(III) uptake channel FPS1.
View Article and Find Full Text PDF