Backgruound: Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are currently used to treat patients with diabetes. Previous studies have demonstrated that treatment with SGLT-2 inhibitors is accompanied by altered metabolic phenotypes. However, it has not been investigated whether the hypothalamic circuit participates in the development of the compensatory metabolic phenotypes triggered by the treatment with SGLT-2 inhibitors.
View Article and Find Full Text PDFCisplatin is a chemotherapeutic drug commonly used for treating different types of cancer. However, long-term use can lead to side effects, including anorexia, nausea, vomiting, and weight loss, which negatively affect the patient's quality of life and ability to undergo chemotherapy. This study aimed to investigate the mechanisms underlying the development of a negative energy balance during cisplatin treatment.
View Article and Find Full Text PDFTTF-1 stimulates appetite by regulating the expression of agouti-related peptide (AgRP) and proopiomelanocortin (POMC) genes in the hypothalamus of starving animals. However, the mechanism underlying TTF-1's response to decreased energy levels remains elusive. Here, we provide evidence that the NAD-dependent deacetylase, sirtuin1 (Sirt1), activates TTF-1 in response to energy deficiency.
View Article and Find Full Text PDFUnlabelled: Eukaryotic translation initiation factor 2α (eIF2α) is a key mediator of the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR). In mammals, eIF2α is phosphorylated by overnutrition-induced ER stress and is related to the development of obesity. Here, we studied the function of phosphorylated eIF2α (p-eIF2α) in agouti-related peptide (AgRP) neurons using a mouse model (AgRPeIF2αA/A) with an AgRP neuron-specific substitution from Ser 51 to Ala in eIF2α, which impairs eIF2α phosphorylation in AgRP neurons.
View Article and Find Full Text PDFMolecular profiling of the hypothalamus in response to metabolic shifts is a critical cue to better understand the principle of the central control of whole-body energy metabolism. The transcriptional responses of the rodent hypothalamus to short-term calorie restriction have been documented. However, studies on the identification of hypothalamic secretory factors that potentially contribute to the control of appetite are lacking.
View Article and Find Full Text PDFObjective: Thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is predominantly expressed in discrete areas of the hypothalamus, which acts as the central unit for the regulation of whole-body energy homeostasis. Current study designed to identify the roles of TTF-1 on the responsiveness of the hypothalamic circuit activity to circulating leptin and the development of obesity linked to the insensitivity of leptin.
Methods: We generated conditional knock-out mice by crossing TTF-1 mice with leptin receptor (ObRb) or proopiomelanocortin (POMC) transgenic mice to interrogate the contributions of TTF-1 in leptin signaling and activity.
Nutrient availability and utilization in hypothalamic cells are directly associated with the regulation of whole-body energy homeostasis. Thus, establishing metabolic profiling in the hypothalamus in response to metabolic shift is valuable to better understand the underlying mechanism of appetite regulation. In the present study, we evaluate the alteration of lipophilic and hydrophilic metabolites in both the hypothalamus and serum of fasted mice.
View Article and Find Full Text PDFThe hypothalamic arcuate nucleus (Arc) is a central unit that controls the appetite through the integration of metabolic, hormonal, and neuronal afferent inputs. Agouti-related protein (AgRP), proopiomelanocortin (POMC), and dopaminergic neurons in the Arc differentially regulate feeding behaviors in response to hunger, satiety, and appetite, respectively. At the time of writing, the anatomical and electrophysiological characterization of these three neurons has not yet been intensively explored.
View Article and Find Full Text PDFSpexin (SPX) is a recently identified neuropeptide that is believed to play an important role in the regulation of energy homeostasis. Here, we describe a mediating function of SPX in hypothalamic leptin action. Intracerebroventricular (icv) SPX administration induced a decrease in food intake and body weight gain.
View Article and Find Full Text PDFMetabolic abnormalities are tightly connected to the perturbation of normal brain functions, thereby causing multiple neurodegenerative diseases. The hypothalamus is the master unit that controls the whole-body energy homeostasis. Thus, altered metabolic activity in the hypothalamus could be a crucial clue to better understand the development of metabolic disorders during aging.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2021
Developmentally regulated GTP-binding protein 2 (DRG2) participates in the regulation of proliferation and differentiation of multiple cells. However, whether DRG2 regulates adipocyte differentiation and related metabolic control remains elusive. This study revealed increases in body weight and adiposity in DRG2 transgenic (Tg) mice overexpressing DRG2.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2021
Sickness symptoms exerted via inflammatory responses occur in several infectious and chronic diseases. A growing body of evidence suggests that altered nutrient availability and metabolism are tightly coupled to inflammatory processes. However, the relationship between metabolic shifts and the development of the sickness response has not been explored fully.
View Article and Find Full Text PDFTristetraprolin (TTP), an RNA-binding protein, controls the stability of RNA by capturing AU-rich elements on their target genes. It has recently been identified that TTP serves as an anti-inflammatory protein by guiding the unstable mRNAs of pro-inflammatory proteins in multiple cells. However, it has not yet been investigated whether TTP affects the inflammatory responses in the hypothalamus.
View Article and Find Full Text PDFAdiponectin, an adipose tissue-derived hormone, plays integral roles in lipid and glucose metabolism in peripheral tissues, such as the skeletal muscle, adipose tissue, and liver. Moreover, it has also been shown to have an impact on metabolic processes in the central nervous system. Astrocytes comprise the most abundant cell type in the central nervous system and actively participate in metabolic processes between blood vessels and neurons.
View Article and Find Full Text PDFBackground: A growing body of evidence shows that hypothalamic inflammation is an important factor in the initiation of obesity. In particular, reactive gliosis accompanied by inflammatory responses in the hypothalamus are pivotal cellular events that elicit metabolic abnormalities. In this study, we examined whether MyD88 signaling in hypothalamic astrocytes controls reactive gliosis and inflammatory responses, thereby contributing to the pathogenesis of obesity.
View Article and Find Full Text PDFBeta-aminoisobutyric acid (BAIBA), a natural thymine catabolite, is involved in the beneficial effects of exercise on metabolic disorders. In particular, it has been reported to reverse the inflammatory processes observed in the peripheral organs of animal models of obesity. Therefore, this study aimed to investigate whether BAIBA improves hypothalamic inflammation, which is also tightly coupled with the development of obesity.
View Article and Find Full Text PDFAdiponectin, an adipokine derived from the adipose tissue, manifests anti-inflammatory effects in the metabolically active organs and is, therefore, beneficial in various metabolic diseases associated with inflammation. However, the role of adiponectin in alleviating the hypothalamic inflammation connected to the pathogenesis of obesity has not yet been clearly interrogated. Here, we identified that the systemic administration of adiponectin suppresses the activation of microglia and thereby reverses the hypothalamic inflammation during short-term exposure to a high-fat diet.
View Article and Find Full Text PDFPenetrating electronics have been used for treating epilepsy, yet their therapeutic effects are debated largely due to the lack of a large-scale, real-time, and safe recording/stimulation. Here, the proposed technology integrates ultrathin epidural electronics into an electrocorticography array, therein simultaneously sampling brain signals in a large area for diagnostic purposes and delivering electrical pulses for treatment. The system is empirically tested to record the ictal-like activities of the thalamocortical network in vitro and in vivo using the epidural electronics.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2018
Here, we report thyroid transcription factor 1 (TTF-1) as an important transcription factor for the expression of heme oxygenase-1 (HO-1). HO-1 is a well-known cytoprotective enzyme against inflammation. We observed that HO-1 co-expressed with TTF-1 in mouse hypothalamic cells.
View Article and Find Full Text PDFWe have recently found that thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2), the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus.
View Article and Find Full Text PDFBackground/objective: Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing factor, is a pro-inflammatory cytokine whose serum level is increased in sepsis and cancer as well as in obesity. Here we report a pro-inflammatory role of visfatin in the brain, to mediate sickness responses including anorexia, hyperthermia and hypoactivity.
Methodology: Rats were intracerebroventricularly (ICV) injected with visfatin, and changes in food intake, body weight, body temperature and locomotor activity were monitored.
Objective: α-Melanocyte-stimulating hormone (α-MSH) and agouti-related peptide (AgRP) control energy homeostasis by their opposing actions on melanocortin receptors (MC3/4R) in the hypothalamus. We previously reported that thyroid transcription factor-1 (TTF-1) controls feeding behavior in the hypothalamus. This study aims to identify the function of TTF-1 in the transcriptional regulation of AgRP and α-MSH synthesis for the control of feeding behavior.
View Article and Find Full Text PDF