Am J Physiol Cell Physiol
July 2015
Na(+)/H(+) exchange by Na(+)/H(+) exchanger 3 (NHE3) is a major route of sodium absorption in the intestine and kidney. We have shown previously that lysophosphatidic acid (LPA), a small phospholipid produced ubiquitously by all types of cells, stimulates NHE3 via LPA5 receptor. Stimulation of NHE3 activity by LPA involves LPA5 transactivating EGF receptor (EGFR) in the apical membrane.
View Article and Find Full Text PDFNa(+)/H(+) exchanger NHE3 expressed in the intestine and kidney plays a major role in NaCl and HCO3 (-) absorption that is closely linked to fluid absorption and blood pressure regulation. The Nedd4 family of E3 ubiquitin ligases interacts with a number of transporters and channels via PY motifs. A comparison of NHE3 sequences revealed the presence of PY motifs in NHE3s from human and several non-human primates but not in non-primate NHE3s.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2012
The Caco-2 cell line represents absorptive polarized intestinal epithelial cells that express multiple forms of Na(+)/H(+) exchanger (NHE) in their plasma membranes. Caco-2 cells express the major apical NHE isoform NHE3, but low NHE3 expression together with inefficient transfection often hamper intended studies. In this study, we examined whether SK-CO15 cells could be used to study NHE3 regulation.
View Article and Find Full Text PDFNa(+) absorption is a vital process present in all living organisms. We have reported previously that lysophosphatidic acid (LPA) acutely stimulates Na(+) and fluid absorption in human intestinal epithelial cells and mouse intestine by stimulation of Na(+)/H(+) exchanger 3 (NHE3) via LPA(5) receptor. In the current study, we investigated the mechanism of NHE3 activation by LPA(5) in Caco-2bbe cells.
View Article and Find Full Text PDFShiga toxin-producing Escherichia coli (STEC) is known to have several defense mechanisms, one of which is the production of extracellular substances including cellulose. The goal of this study was to prepare pairs of STEC cultures for use in future studies designed to address the role of cellulose in protecting the cells of STEC for survival under adverse environmental conditions. Cells of STEC deficient in cellulose production were separated from cellulose-proficient wild-type cells.
View Article and Find Full Text PDFCulture conditions favoring cellulose production by Shiga toxin-producing Escherichia coli included a 28 degrees C incubation temperature, an aerobic atmosphere, and the presence of 2% ethanol in Luria-Bertani no-salt agar with pH 6.0 and a water activity of 0.99.
View Article and Find Full Text PDF