Publications by authors named "Bylino O"

Lifespan is a complex quantitative trait involving genetic and non-genetic factors as well as the peculiarities of ontogenesis. As with all quantitative traits, lifespan shows considerable variation within populations and between individuals. , a favourite object of geneticists, has greatly advanced our understanding of how different forms of variability affect lifespan.

View Article and Find Full Text PDF

Cardiometabolic diseases (CMDs) are complex disorders with a heterogenous phenotype, which are caused by multiple factors including genetic factors. Single nucleotide polymorphisms (SNPs) rs45539933 (p.Ala64Thr), rs10011540 (c.

View Article and Find Full Text PDF

The spatial organization of chromosomes is involved in regulating the majority of intranuclear processes in higher eukaryotes, including gene expression. Drosophila was used as a model to discover many transcription factors whose homologs play a key role in regulation of gene expression in mammals. According to modern views, a cohesin complex mostly determines the architecture of mammalian chromosomes by forming chromatin loops on anchors created by the CTCF DNA-binding architectural protein.

View Article and Find Full Text PDF
Article Synopsis
  • The regulation of gene expression is crucial for the development and functioning of cells and tissues, impacting the overall health of complex organisms.
  • Alterations in gene expression can lead to various pathologies and also play a role in influencing lifespan across different species, including humans.
  • The fruit fly serves as an effective model for studying the mechanisms of aging and longevity due to its manageable care, quick life cycle, and well-understood genetic framework.
View Article and Find Full Text PDF

CTCF is the most thoroughly studied chromatin architectural protein and it is found in both Drosophila and mammals. CTCF preferentially binds to promoters and insulators and is thought to facilitate formation of chromatin loops. In a subset of sites, CTCF binding depends on the epigenetic status of the surrounding chromatin.

View Article and Find Full Text PDF

A transition from one developmental stage to another is accompanied by activation of developmental programs and corresponding gene ensembles. Changes in the spatial conformation of the corresponding loci are associated with this activation and can be investigated with the help of the Chromosome Conformation Capture (3C) methodology. Application of 3C to specific developmental stages is a sophisticated task.

View Article and Find Full Text PDF

A constellation of chromosome conformation capture methods (С-methods) are an important tool for biochemical analysis of the spatial interactions between DNA regions that are separated in the primary sequence. All these methods are based on the long sequence of basic steps of treating cells, nuclei, chromatin, and finally DNA, thus representing a significant technical challenge. Here, we present an in-depth study of the basic steps in the chromatin conformation capture procedure (3С), which was performed using Drosophila Schneider 2 cells as a model.

View Article and Find Full Text PDF

The chromatin remodeler SWI/SNF is an important participant in gene activation, functioning predominantly by opening the chromatin structure on promoters and enhancers. Here, we describe its novel mode of action in which SWI/SNF factors mediate the targeted action of an enhancer. We studied the functions of two signature subunits of PBAP subfamily, BAP170 and SAYP, in .

View Article and Find Full Text PDF

The genomes of all organisms abound with various -regulatory elements, which control gene activity. Transcriptional enhancers are a key group of such elements in eukaryotes and are DNA regions that form physical contacts with gene promoters and precisely orchestrate gene expression programs. Here, we follow gradual evolution of this regulatory system and discuss its features in different organisms.

View Article and Find Full Text PDF

Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed.

View Article and Find Full Text PDF

Apoptosis (programmed cell death) is essential machinery for multicellular organisms. Apoptosis plays an important role in cell differentiation, damaged cell elimination and immune system homeostasis. This review is focused on various mechanisms of signal transduction through caspase-2 which believed to be one of the most enigmatical protease involved in apoptosis.

View Article and Find Full Text PDF