Electrical gradients are fundamental to physiological processes including cell migration, tissue formation, organ development, and response to injury and regeneration. Current electrical modulation of cells is primarily studied under a uniform electrical field. Here we demonstrate the fabrication of conductive gradient hydrogels (CGGs) that display mechanical properties and varying local electrical gradients mimicking physiological conditions.
View Article and Find Full Text PDFEffective stroke recovery therapeutics remain limited. Stem cell therapies have yielded promising results, but the harsh ischemic environment of the post-stroke brain reduces their therapeutic potential. Previously, we developed a conductive polymer scaffold system that enabled stem cell delivery with simultaneous electrical modulation of the cells and surrounding neural environment.
View Article and Find Full Text PDFStroke is a leading cause of long-term disability worldwide, intensifying the need for effective recovery therapies. Stem cells are a promising stroke therapeutic, but creating ideal conditions for treatment is essential. Here we developed a conductive polymer system for stem cell delivery and electrical modulation in animals.
View Article and Find Full Text PDFThe application of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine can be limited by the prolonged times required for functional human neuronal differentiation and traditional 2D culture techniques. Here, a conductive graphene scaffold (CGS) to modulate mechanical and electrical signals to promote human iPSC-derived neurons is presented. The soft CGS with cortex-like stiffness (≈3 kPa) and electrical stimulation (±800 mV/100 Hz for 1 h) incurs a fivefold improvement in the rate (14d) of generating iPSC-derived neurons over some traditional protocols, with an increase in mature cellular markers and electrophysiological characteristics.
View Article and Find Full Text PDFOn April 10, 2020, the FDA approved selumetinib (KOSELUGO, AstraZeneca) for the treatment of pediatric patients 2 years of age and older with neurofibromatosis type 1 who have symptomatic, inoperable plexiform neurofibromas. Approval was based on demonstration of a durable overall response rate per Response Evaluation in Neurofibromatosis and Schwannomatosis criteria and supported by observed clinical improvements in plexiform neurofibroma-related symptoms and functional impairments in 50 pediatric patients with inoperable plexiform neurofibromas in a single-arm, multicenter trial. The overall reponse rate per NCI investigator assessment was 66% (95% confidence interval, 51-79) with at least 12 months of follow-up.
View Article and Find Full Text PDFExtracellular matrix (ECM) properties affect multiple cellular processes such as cell survival, proliferation, and protein synthesis. Thus, a polymeric-cell delivery system with the ability to manipulate the extracellular environment can act as a fundamental regulator of cell function. Given the promise of stem cell therapeutics, a method to uniformly enhance stem cell function, in particular trophic factor release, can prove transformative in improving efficacy and increasing feasibility by reducing the total number of cells required.
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived neural progenitor cells (hNPCs) are a promising cell source for stem cell transplantation to treat neurological diseases such as stroke and peripheral nerve injuries. However, there have been limited studies investigating how the dimensionality of the physical and electrical microenvironment affects hNPC function. In this study, we report the fabrication of two- and three-dimensional (2D and 3D respectively) constructs composed of a conductive polymer to compare the effect of electrical stimulation of hydrogel-immobilized hNPCs.
View Article and Find Full Text PDFDespite the prevalence of stroke, therapies to augment recovery remain limited. Here we focus on the use of conductive polymers for cell delivery, drug release, and electrical stimulation to optimize the post-stroke environment for neural recovery. Conductive polymers and their interactions with in vitro and in vivo neural systems are explored.
View Article and Find Full Text PDFCurrently, no medical therapies exist to augment stroke recovery. Stem cells are an intriguing treatment option being evaluated, but cell-based therapies have several challenges including developing a stable cell product with long term reproducibility. Since much of the improvement observed from cellular therapeutics is believed to result from trophic factors the stem cells release over time, biomaterials are well-positioned to deliver these important molecules in a similar fashion.
View Article and Find Full Text PDFStem cell therapy has emerged as an exciting stroke therapeutic, but the optimal delivery method remains unclear. While the technique of microinjection has been used for decades to deliver stem cells in stroke models, this technique is limited by the lack of ability to manipulate the stem cells prior to injection. This paper details a method of using an electrically conductive polymer scaffold for stem cell delivery.
View Article and Find Full Text PDFExogenous human neural progenitor cells (hNPCs) are promising stroke therapeutics, but optimal delivery conditions and exact recovery mechanisms remain elusive. To further elucidate repair processes and improve stroke outcomes, we developed an electrically conductive, polymer scaffold for hNPC delivery. Electrical stimulation of hNPCs alters their transcriptome including changes to the VEGF-A pathway and genes involved in cell survival, inflammatory response, and synaptic remodeling.
View Article and Find Full Text PDFBackground: Thiolated-graphene quantum dots (SH-GQDs) were developed and assessed for an efficient preventive means against atherosclerosis and potential toxicity through computational image analysis and animal model studies.
Experiments: Zebrafish (wild-type, wt) were used for evaluation of toxicity through the assessment of embryonic mortality, malformation and ROS generation. The amounts of SH-GQDs uptaken by mouse macrophage cells (Raw264.
Purpose: The current study was designed to develop thiolated-graphene quantum dots (SH-GQDs) as a theranostic nanocarrier and evaluate its potential for the optimal scavenging of reactive oxygen species (ROS) in macrophages.
Methods: SH-GQDs were prepared by hydrothermal pyrolysis of carbon source (citric acid) in the presence of reduced-glutathione (GSH). Raw264.
This study was aimed to develop and evaluate a smart nanosystem that targeted photothermal ablation of inflammatory macrophages in atherosclerotic plaque. Mannosylated-reduced graphene oxide (Man-rGO) was synthesized using three step procedures: (1) preparation of ox-GOs, (2) microwave-assisted synthesis of PEI-rGOs, and (3) mannosylation of PEI-rGO using reductive amination reaction (Man-rGOs). The ζ-potential of Man-rGO that signifies electrophoretic mobility of the charged surface was examined using Zetasizer Nano ZS.
View Article and Find Full Text PDFPurpose: This study was aimed to develop a hydrogel-nanofiber as an advanced carrier for adipose derived human mesenchymal stem cells (AD-MSCs) and evaluate its potential for immunomodulatory therapies applicable to surface coating of drug eluting stent (DES) against coronary artery diseases (CAD).
Methods: A mixture of dispersing-nanofibers (dNFs) and poly (ethylene glycol)-diacrylate (PEGDA) were blended with sodium alginate to achieve robust mechanical strength. The effects of stem cell niche on cell viability and proliferation rates were evaluated using LDH assay and alamar blue assay, respectively.
Purpose: The nanofiber-hydrogel blend containing nitric oxide (NO) donors and reactive oxygen species (ROS) scavengers (Edaravone: EDV) was explored as an advanced strategy for stabilization of Mast cells (MCs) to achieve efficient immune-suppressive effects.
Methods: Three types of nanofiber hydrogel composites (Bare-Nanofibers (BNF), Nanofiber-Hydrogels (NF-Gel) and Cross-linked Nanofiber-Hydrogels (NF-Gel-X)), were evaluated. The degranulation rates of MCs were determined by measurement of the extracellular levels of hydrogen peroxide and the released amounts of β-hexosaminidase from the activated-MCs (a-MCs).
Introduction: Organ/tissue replacement therapy is inherently difficult for application in the tissue engineering field due to immune rejection that limits the long-term efficacy of implanted devices. As the application of tissue engineering in the biomedical field has steadily expanded, stem cells have emerged as a viable option to promote the immune acceptance of implantable devices and to expedite alleviation of the pathological conditions. With various novel scaffolds being introduced, nanofibers which have a three-dimensional architecture can be considered as an efficient carrier for stem cells.
View Article and Find Full Text PDFNanofiber was explored as a stent surface coating substance for the treatment of coronary artery diseases (CAD). Nanofibers loaded with nanoparticles containing β-estradiol were developed and exploited to prevent stent-induced restenosis through regulation of the reactive oxygen species (ROS). Eudragit S-100 (ES), a versatile polymer, was used as a nanoparticle (NP) base, and the mixtures of hexafluoro-2-propanol (HFIP), PLGA and PLA at varying ratios were used as a nanofiber base.
View Article and Find Full Text PDF