Alkaline phosphatase (ALP) is one of the most versatile biomarkers for early detection of several diseases, such as oral carcinomas and periodontitis; therefore, great efforts have been dedicated for developing an ALP biosensor. Multicolor detection of ALP in saliva is ideal for a point-of-care diagnosis; however, this approach is very challenging since spectral responses over wavelengths of several tens of nanometers have thus far remained difficult to achieve. In this work, a colorimetric biosensor for ALP assay has been developed based on ALP affinity to dephosphorylate glucose phosphate into glucose, which has the affinity to deposit Ag nanoshells onto Au nanobipyramids with a multicolor response.
View Article and Find Full Text PDFMicroscale lasers efficiently deliver coherent photons into small volumes for intracellular biosensors and all-photonic microprocessors. Such technologies have given rise to a compelling pursuit of ever-smaller and ever-more-efficient microlasers. Upconversion microlasers have great potential owing to their large anti-Stokes shifts but have lagged behind other microlasers due to their high pump power requirement for population inversion of multiphoton-excited states.
View Article and Find Full Text PDFSmartphone-assisted point-of-care (POC) bioassay has brought a giant leap in personal healthcare system and environmental monitoring advancements. In this study, we developed a rapid and reliable colorimetric urea biosensor assisted by a smartphone. We employed hydrolysis of urea into NH by urease, which activates the reduction power of tannic acid, to generate silver nanoparticles for a dramatic colorimetric response.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2021
Alkaline phosphatase (ALP) is an enzyme that catalyzes the dephosphorylation of proteins, nucleic acids, and biomolecules. It is a potential biomarker for diverse diseases such as breast cancer, osteopenia, and hepatobiliary. Herein, we developed a colorimetric sensor for the ALP assay based on its enzymatic activity to dephosphorylate the p-aminophenol phosphate (pAPP) into pAP.
View Article and Find Full Text PDFPolydiacetylene (PDA), a conjugated polymer, has attracted attention for realization of a label-free real-time colorimetric biosensor because it exhibits large and rapid colorimetric responses upon the binding of biomolecules. This is due to the conformational distortion of its conjugated backbone. However, solid-state PDA biosensors for point-of-care diagnosis remain unexplored.
View Article and Find Full Text PDFAchieving single-band upconversion is a challenging but rewarding approach to attain optimal performance in diverse applications, such as multiplexed molecular imaging, security coding, and nonlinear photonic devices. Here, highly efficient single-band upconversion luminescence in the green spectral regime (16.4 times increase in emission at 525 nm) accomplished by realizing minimal energy loss from two-photon upconversion in a newly synthesized liquid-quenched amorphous matrix is reported.
View Article and Find Full Text PDFLanthanide upconversion (UC) luminescent nanocrystals exhibit a uniquely sharp multiband emission over a broad spectral bandwidth covering the ultraviolet region to the near-infrared (NIR) region when subjected to NIR excitation, which is vital for multichannel optical communication using wavelength-division multiplexing to achieve high transmission rates. In this study, we experimentally and theoretically investigated the spectral and spatial characterization of a single NaYF:Yb,Tm(Yb,Er) UC nanocrystal as a nanowaveguide. We suggest that a UC nanocrystal can be used as a nanowaveguide because it produces a range of output colors simultaneously and provides unaltered emission bands during propagation.
View Article and Find Full Text PDFTitanium (Ti)-based dental implants with multiscale surface topography have attracted great attention as a promising approach to enhance fixation and long-term stability of the implants, through the synergistic effect of nano- and microscale surface roughness, for accelerated bone regeneration and improved mechanical interlocking. However, structural integrity and mechanical stability of the multiscale roughened Ti surface under deformation need to be considered because significant deformation of dental implants is often induced during the surgical operation. Therefore, in this study, a well-defined nanoporous structure was directly introduced onto micro-roughened Ti surfaces through target-ion induced plasma sputtering (TIPS) with a tantalum (Ta) target, following sand-blasted, large-grit and acid-etching (SLA).
View Article and Find Full Text PDFHierarchical micro-nano (HMN) surface structuring of dental implants is a fascinating strategy for achieving fast and mechanically stable fixation due to the synergetic effect of micro- and nano-scale surface roughness with surrounding tissues. However, the introduction of a well-defined nanostructure on a microstructure having complex surface geometry is still challenging. As a means of fabricating HMN surface on Ti6Al4V-ELI, target-ion induced plasma sputtering (TIPS) was used onto a sand-blasted, large-grit and acid-etched substrate.
View Article and Find Full Text PDFOwing to the excellent bioactive properties of recombinant human bone morphogenetic proteins (rhBMPs), dentistry considers them as a fascinating adjuvant alternative for enhancing bone regeneration and bone-to-implant junction in the early implantation stages. However, stable loading and delivery efficiency of rhBMPs on the implant surfaces involve major concerns because of the harsh wearing condition under load during implantation. In this study, to achieve successful rhBMP-2 delivery, a nanoporous surface structure is introduced on the sandblasting with large grit and acid-etching (SLA)-treated titanium (Ti) surface via the tantalum (Ta) target-ion induced plasma sputtering (TIPS) technique.
View Article and Find Full Text PDFThe leaves of the persimmon tree (PL) are known to have beneficial effects on hyperglycemia, dyslipidemia, and nonalcoholic fatty liver disease. We recently demonstrated that PL had antithrombotic properties in vitro. However, little is known about the antiplatelet and anticoagulant properties of PL in vivo.
View Article and Find Full Text PDF