Publications by authors named "Byeongha Lee"

Article Synopsis
  • Salinity negatively impacts plant growth and crucial processes like photosynthesis, making it difficult to enhance crop tolerance to abiotic stress due to a trade-off where resistance often reduces growth.
  • The study discovered the plastocyanin gene (PaPC) from the Antarctic moss Polytrichastrum alpinum, which boosted photosynthesis and salt tolerance in Arabidopsis thaliana without harming growth.
  • PaPC showed superior effects in enhancing yield potential and photosynthetic efficiency in both Arabidopsis and rice under stress, demonstrating its value as a genetic resource for developing resilient crops.
View Article and Find Full Text PDF

Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1.

View Article and Find Full Text PDF

A method to enhance laser ultrasound (LUS) image reconstruction with the time-domain synthetic aperture focusing technique (T-SAFT) is presented, in which the acoustic velocity is extracted in situ with curve fitting. The operational principle is provided with the help of a numerical simulation, and the confirmation is provided experimentally. In these experiments, an all-optic LUS system was developed by using lasers for both excitation and detection of ultrasound.

View Article and Find Full Text PDF

A hemispherical resonator gyroscope (HRG) has been implemented by using a consumer wineglass as the resonator and 3 × 3 optical interferometers as the detectors. The poorness of the off-the-shelf wineglass as the resonator can be overcome by the high performance of the optical interferometer. The effects of asymmetries in stiffness and absorption of the resonator are analyzed theoretically and confirmed experimentally.

View Article and Find Full Text PDF

Ballistic waves directly carry image information in imaging through a scattering medium, but they are often obscured by much intense multiple-scattered waves. Detecting early arriving photons has been an effective method to extract ballistic waves in the transmission-mode imaging. However, it has been difficult to identify the temporal distribution of ballistic waves relative to the multiple scattering waves in the quasi-diffusive regime.

View Article and Find Full Text PDF

The current agricultural system is biased for the yield increase at the cost of biodiversity. However, due to the loss of precious genetic diversity during domestication and artificial selection, modern cultivars have lost the adaptability to cope with unfavorable environments. There are many reports on variations such as single nucleotide polymorphisms (SNPs) and indels in the stress-tolerant gene alleles that are associated with higher stress tolerance in wild progenitors, natural accessions, and extremophiles in comparison with domesticated crops or model plants.

View Article and Find Full Text PDF

Cold stress is a major environmental stress that severely affects plant growth and crop productivity. Arabidopsis () HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15) is a substrate receptor of the CULLIN4-based CLR4 ubiquitin E3 ligase complex, which epigenetically regulates cold tolerance by degrading HISTONE DEACETYLASE2C (HD2C) to switch from repressive to permissive chromatin structure in response to cold stress. In this study, we characterized a HOS15-binding protein, POWERDRESS (PWR), and analyzed its function in the cold stress response.

View Article and Find Full Text PDF

Low-oxygen stress, mainly caused by soil flooding, is a serious abiotic stress affecting crop productivity worldwide. To understand the mechanisms of low-oxygen stress responses and adaptation of plants, we characterized and compared low-oxygen responses in six species with different accessions of the Brassicaceae family. Based on the growth and survival responses to submergence or low-oxygen condition, these accessions could be divided into three groups: (i) Highly tolerant species ( and ); (ii) moderately tolerant species ( [, Ler, Ws and Col-0 ecotype]); and (iii) intolerant species (, [Shandong and Yukon ecotype], and ).

View Article and Find Full Text PDF

Plants respond to cold stress by inducing the expression of transcription factors that regulate downstream genes to confer tolerance to freezing. We screened an Arabidopsis transfer DNA (T-DNA) insertion library and identified a cold-hypersensitive mutant, which we named stch4 (sensitive to chilling 4). STCH4/REIL2 encodes a ribosomal biogenesis factor that is upregulated upon cold stress.

View Article and Find Full Text PDF

Cuticular waxes, which cover the aboveground parts of land plants, are essential for plant survival in terrestrial environments. However, little is known about the regulatory mechanisms underlying cuticular wax biosynthesis in response to changes in ambient humidity. Here, we report that the Arabidopsis () Kelch repeat F-box protein SMALL AND GLOSSY LEAVES1 (SAGL1) mediates proteasome-dependent degradation of ECERIFERUM3 (CER3), a biosynthetic enzyme involved in the production of very long chain alkanes (the major components of wax), thereby negatively regulating cuticular wax biosynthesis.

View Article and Find Full Text PDF

Background: Long-chain free fatty acids (FFAs) are a type of backbone molecule that can react with alcohol to produce biodiesels. Various microorganisms have become potent producers of FFAs. Efforts have focused on increasing metabolic flux to the synthesis of either neutral fat or fatty acyl intermediates attached to acyl carrier protein (ACP), which are the source of FFAs.

View Article and Find Full Text PDF

A Kelch repeat F-box containing protein, SMALL AND GLOSSY LEAVES1 (SAGL1) regulates phenylpropanoid biosynthesis as a post-translational regulator for PAL1 (phenylalanine ammonia-lyase) and an indirect transcriptional regulator for ANTHOCYANIDIN SYNTHASE. Phenylpropanoid biosynthesis in plants produces diverse aromatic metabolites with important biological functions. Phenylalanine ammonia-lyase (PAL) catalyzes the first step in phenylpropanoid biosynthesis by converting L-phenylalanine to trans-cinnamic acid.

View Article and Find Full Text PDF

Sanionia uncinata is a dominant moss species in the maritime Antarctic. Due to its high adaptability to harsh environments, this extremophile plant has been considered a good target for studying the molecular adaptation mechanisms of plants to a variety of environmental stresses. Despite the importance of S.

View Article and Find Full Text PDF

Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive genes, and Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor.

View Article and Find Full Text PDF

Organellar genomes of bryophytes are poorly represented with chloroplast genomes of only four mosses, four liverworts and two hornworts having been sequenced and annotated. Moreover, while Antarctic vegetation is dominated by the bryophytes, there are few reports on the plastid genomes for the Antarctic bryophytes. (Hedw.

View Article and Find Full Text PDF

PaFKBP12 overexpression in Arabidopsis resulted in stress tolerance to heat, ABA, drought, and salt stress, in addition to growth promotion under normal conditions. Polytrichastrum alpinum (alpine haircap moss) is one of polar organisms that can withstand the severe conditions of the Antarctic. In this study, we report the isolation of a peptidyl prolyl isomerase FKBP12 gene (PaFKBP12) from P.

View Article and Find Full Text PDF

The CRISPR/Cas system became a powerful genome editing tool for basic plant research and crop improvement. Thus far, CRISPR/Cas has been applied to many plants, including Arabidopsis, rice and other crop plants. It has been reported that CRISPR/Cas efficiency is generally high in many plants.

View Article and Find Full Text PDF

Background: Glioma stem cells (GSCs) are a major cause of the frequent relapse observed in glioma, due to their high drug resistance and their differentiation potential. Therefore, understanding the molecular mechanisms governing the 'cancer stemness' of GSCs will be particularly important for improving the prognosis of glioma patients.

Methods: We previously established cancerous neural stem cells (CNSCs) from immortalized human neural stem cells (F3 cells), using the H-Ras oncogene.

View Article and Find Full Text PDF

is one of the moss species that survives extreme conditions in the Antarctic. In order to explore the functional benefits of moss genetic resources, multiprotein-bridging factor 1c gene () was isolated and characterized. The deduced amino acid sequence of PaMBF1c comprises of a multiprotein-bridging factor (MBF1) domain and a helix-turn-helix (HTH) domain.

View Article and Find Full Text PDF

In order to understand plant stress tolerance and its application, it is important to identify the signaling components involved in the stress-regulated gene expression. One initial step for this is generation of a stress-inducible luminescent Arabidopsis and its use in genetic mutant screening. Here, we describe how to generate a transgenic Arabidopsis line harboring a single copy of the STABILIZED1 (STA1) promoter-driven luciferase transgene (STA1p-LUC) as an example.

View Article and Find Full Text PDF

Flooding is a principal stress that limits plant productivity. The sensing of low oxygen levels (hypoxia) plays a critical role in the signaling pathway that functions in plants in flooded environments. In this study, to investigate hypoxia response mechanisms in Arabidopsis, we identified three hypoxia-related genes and subjected one of these genes, Arabidopsis thaliana HYPOXIA-INDUCED GENE DOMAIN 1 (AtHIGD1), to molecular characterization including gene expression analysis and intracellular localization of the encoded protein.

View Article and Find Full Text PDF

High-temperature stress often leads to differential RNA splicing, thus accumulating different types and/or amounts of mature mRNAs in eukaryotic cells. However, regulatory mechanisms underlying plant precursor mRNA (pre-mRNA) splicing in the environmental stress conditions remain elusive. Herein, we describe that a U5-snRNP-interacting protein homolog STABILIZED1 (STA1) has pre-mRNA splicing activity for heat-inducible transcripts including s and various s for the establishment of heat stress tolerance in Arabidopsis ().

View Article and Find Full Text PDF

We characterized an aquaporin gene from and investigated its physiological roles in heterologous expression systems, yeast and , under high salt and high osmotic stress conditions. In yeast, the expression of enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing also showed better stress tolerance in germination and root growth under high salt and high osmotic stresses than the wild type (WT).

View Article and Find Full Text PDF

To cope with environmental stresses, plants have developed various stress tolerance mechanisms that involve the induction of many stress responsive genes through stress-specific and common signaling pathways. Stress-specific/common transcription factors, rather than general basal factors, were considered important in this stress tolerance. The Arabidopsis STABILIZED1 (STA1) gene encodes a putative pre-mRNA splicing factor that is similar to the human U5 snRNP-associated 102-kDa protein and the yeast pre-mRNA splicing factors, PRP1p and Prp6p.

View Article and Find Full Text PDF

Phyllotaxy describes the geometric arrangement of leaves and is important for plant productivity. Auxin is well known to regulate phyllotactic patterns via PIN1-dependent auxin polar transport, and studies of maize (Zea mays) aberrant phyllotaxy1 (abph1) mutants suggest the importance of auxin and cytokinin signaling for control of phyllotaxy. However, whether additional regulators control these patterns is poorly understood.

View Article and Find Full Text PDF