Publications by authors named "Byeong-Hee Kim"

Article Synopsis
  • - The study presents a real-time classification system for alcoholic beverages utilizing low-cost gas sensors and machine learning, inspired by the superior olfactory capabilities of dogs.
  • - By leveraging data from 30 gas sensors, the system achieved an impressive classification accuracy of over 99% across different types of alcoholic beverages, showcasing the impact of effective data preprocessing and sensor quantity on performance.
  • - The results indicate that the electronic nose system developed performs similarly to commercial systems, confirming its potential for real-time classification of alcoholic beverages.
View Article and Find Full Text PDF

While striving to optimize overall efficiency, smart manufacturing systems face various problems presented by the aging workforce in modern society. The proportion of aging workers is rapidly increasing worldwide, and visual perception, which plays a key role in quality control, is significantly susceptible to the impact of aging. Thus it is necessary to understand these changes and implement state-of-the-art technologies as solutions.

View Article and Find Full Text PDF

This paper presents an electronic nose system inspired by the biological olfactory system. When comparing the human olfactory system to that of a dog, it's worth noting that dogs have 30 times more olfactory receptors and three times as many types of olfactory receptors. This implies that the number of olfactory receptors could be a more important parameter for classifying chemical compounds than the number of receptor types.

View Article and Find Full Text PDF

A novel method for tool wear estimation in milling using infrared (IR) laser vision and a deep-learning algorithm is proposed and demonstrated. The measurement device employs an IR line laser to irradiate the tool focal point at angles of -7.5°, 0.

View Article and Find Full Text PDF

In this paper, a novel drill bit breakage prediction method featuring a low-cost commercial infrared sensor to monitor drill bit corner wear is proposed. In the proposed method, the drill bit outer corner wear state can be monitored by measuring reflected infrared light because the reflection phenomenon is influenced by wear, edge shape, and surface roughness of the drill bit. In the experiments, a titanium workpiece was drilled without using cutting fluid to accelerate drill bit fracture.

View Article and Find Full Text PDF

In this study, ultra-thin ion exchange film on the ceramic supporter (UTFCS) composed of thin polymer layer and nanoporous ceramic layer with low electrical resistance was developed. The electrical properties and permselectivity of UTFCSs were evaluated and the properties of UTFCSs were compared with other ion exchange membranes. Fabricated UTFCSs were applied to a reverse electrodialysis (RED) system to evaluate the output characteristics and compared with other ion exchange membranes.

View Article and Find Full Text PDF

This paper presents a method to utilize the growth properties of anodic alumina possessing self-formation characteristics to fabricate a nano-textured microstructure and also introduces an application technique of the proposed method. The growth rate of anodic alumina, fabricated on aluminum surfaces, has a strong dependence on the intensity of the applied current density or electric field. The uniformity of the thickness of anodic alumina is determined by its electrical distribution characteristics.

View Article and Find Full Text PDF

In this study, a non-contact type intraocular pressure (IOP) measuring system using reflected pneumatic pressure is proposed to overcome the disadvantages of existing measurement systems. A ring-type nozzle, a key component in the proposed system, is designed via computational fluid analysis. It predicts the reflected pneumatic pressure based on the nozzle exit angle and inner and outer diameters of the nozzle, which are 30°, 7 mm, and 9 mm, respectively.

View Article and Find Full Text PDF

Directed cell migration is critical to a variety of biological and physiological processes. Although simple topographical patterns such as parallel grooves and three-dimensional post arrays have been studied to guide cell migration, the effect of the dimensions and shape of micropatterns, which respectively represent the amount and gradient of physical spatial cues, on cell migration has not yet been fully explored. This motivates a quantitative characterization of cell migration in response to micropatterns having different widths and divergence angles.

View Article and Find Full Text PDF