Proc Natl Acad Sci U S A
September 2013
When combinatorial antibody libraries are rendered infectious for eukaryotic cells, the integrated antibody genotype and cellular phenotype become permanently linked and each cell becomes a selection system unto itself. These systems should be ideal for the identification of proteins and pathways that regulate differentiation so long as selection systems can be devised. Here we use a selection system based on the ability of secreted antibodies to alter the morphology of colonies expressing them when grown in soft agar.
View Article and Find Full Text PDFBiologically active conformations of the IgG1 Fc homodimer are maintained by multiple hydrophobic interactions between the protein surface and the N-glycan. The Fc glycan modulates biological effector functions, including antibody-dependent cellular cytotoxicity (ADCC) which is mediated in part through the activatory Fc receptor, FcγRIIIA. Consistent with previous reports, we found that site-directed mutations disrupting the protein-carbohydrate interface (F241A, F243A, V262E, and V264E) increased galactosylation and sialylation of the Fc and, concomitantly, reduced the affinity for FcγRIIIA.
View Article and Find Full Text PDFHuman IgG Fc glycosylation modulates immunological effector functions such as antibody-dependent cellular cytotoxicity and phagocytosis. Engineering of Fc glycans therefore enables fine-tuning of the therapeutic properties of monoclonal antibodies. The N-linked glycans of Fc are typically complex-type, forming a network of noncovalent interactions along the protein surface of the Cγ2 domain.
View Article and Find Full Text PDFEpidemiologic and clinical evidence points to an increased risk for cancer when coupled with chronic inflammation. However, the molecular mechanisms that underpin this interrelationship remain largely unresolved. Herein we show that the inflammation-derived cholesterol 5,6-secosterol aldehydes, atheronal-A (KA) and -B (ALD), but not the polyunsaturated fatty acid (PUFA)-derived aldehydes 4-hydroxynonenal (HNE) and 4-hydroxyhexenal (HHE), induce misfolding of wild-type p53 into an amyloidogenic form that binds thioflavin T and Congo red dyes but cannot bind to a consensus DNA sequence.
View Article and Find Full Text PDFAntibody discovery typically uses hybridoma- or display-based selection approaches, which lack the advantages of directly screening spatially addressed compound libraries as in small-molecule discovery. Here we apply the latter strategy to antibody discovery, using a library of ∼10,000 human germline antibody Fabs created by de novo DNA synthesis and automated protein expression and purification. In multiplexed screening assays, we obtained specific hits against seven of nine antigens.
View Article and Find Full Text PDFOngoing efforts to unravel the origins of the cholesterol 5,6-secosterols (1a and 1b) in biological systems have revealed that the two known chemical routes to these oxysterols, ozonolysis of cholesterol (3) and Hock-cleavage of 5-alpha-hydroperoxycholesterol (4a), are distinguishable based upon the ratio of the hydrazone derivatives (2a and 2b) formed in each case and this ratio offers an insight into the chemical origin of the secosterols in vivo.
View Article and Find Full Text PDFThe large multidomain GTPase dynamin self-assembles around the necks of deeply invaginated coated pits at the plasma membrane and catalyzes vesicle scission by mechanisms that are not yet completely understood. Although a structural role for the 'middle' domain in dynamin function has been suggested, it has not been experimentally established. Furthermore, it is not clear whether this putative function pertains to dynamin structure in the unassembled state or to its higher-order self-assembly or both.
View Article and Find Full Text PDFDynamin, unlike many GTPase superfamily members, exhibits a relatively rapid basal rate of GTP hydrolysis that is not rate-limited by GTP binding or GDP dissociation. Also unique to dynamin GTPase family members is their ability to self-assemble into rings and helical stacks of rings either in solution or onto lipid templates. Self-assembly stimulates dynamin's GTPase activity by >100-fold.
View Article and Find Full Text PDFThe mechanism by which the self-assembling GTPase dynamin functions in vesicle formation remains controversial. Point mutations in shibire, the Drosophila dynamin, cause temperature-sensitive (ts) defects in endocytosis. We show that the ts2 mutation, which occurs in the switch 2 region of dynamin's GTPase domain, compromises GTP binding affinity.
View Article and Find Full Text PDFThe GTPase dynamin is essential for clathrin-mediated endocytosis. Unlike most GTPases, dynamin has a low affinity for nucleotide, a high rate of GTP hydrolysis, and can self-assemble, forming higher order structures such as rings and spirals that exhibit up to 100-fold stimulated GTPase activity. The role(s) of GTP binding and/or hydrolysis in endocytosis remain unclear because mutations in the GTPase domain so far studied impair both.
View Article and Find Full Text PDFDynamin GTPase activity is required for its biological function in clathrin-mediated endocytosis; however, the role of self-assembly has not been unambiguously established. Indeed, overexpression of a dynamin mutant, Dyn1-K694A, with impaired ability to self-assemble has been shown to stimulate endocytosis in HeLa cells (Sever et al., Nature 1999, 398, 481).
View Article and Find Full Text PDF