Publications by authors named "Byeong Hun Choi"

It has long been postulated that dietary restriction is beneficial for ensuring longevity and extending the health span of mammals, including humans. In particular, a reduction in protein consumption has been shown to be specifically linked to the beneficial effect of dietary restriction on metabolic disorders, presumably by reducing the activity of the mechanistic target of rapamycin complex (mTORC) 1 and the reciprocal activation of AMP-activated protein kinase (AMPK) and sirtuin pathways. Although it is widely used as a dietary supplement to delay the aging process in humans, recent evidence suggests that branched-chain amino acids (BCAAs) might be a major cause of the deteriorating effect of a protein diet on aging and related disorders.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how PRMT6, a protein linked to various metabolic processes, interacts with and regulates LXR alpha, which is important for hepatic lipogenesis and lipid metabolism.
  • Researchers found that PRMT6 enhances the promoter activity of SREBP-1c by binding to LXR alpha and methylating it, leading to increased lipogenesis in the liver.
  • The findings suggest that PRMT6 plays a significant role in controlling lipid accumulation in the liver, which could have implications for conditions like non-alcoholic fatty liver disease (NAFLD).
View Article and Find Full Text PDF

Adipose tissues are central in controlling metabolic homeostasis and failure in their preservation is associated with age-related metabolic disorders. The exact role of mature adipocytes in this phenomenon remains elusive. Here we describe the role of adipose branched-chain amino acid (BCAA) catabolism in this process.

View Article and Find Full Text PDF

Liver plays a crucial role in controlling energy homeostasis in mammals, although the exact mechanism by which it influences other peripheral tissues has yet to be addressed. Here we show that Creb regulates transcriptional co-activator (Crtc) 2 is a major regulator of whole-body energy metabolism. Crtc2 liver-specific knockout lowers blood glucose levels with improved glucose and insulin tolerance.

View Article and Find Full Text PDF

The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis.

View Article and Find Full Text PDF