This paper intends to investigate the feasibility of peripheral artery disease (PAD) diagnosis based on the analysis of non-invasive arterial pulse waveforms. We generated realistic synthetic arterial blood pressure (BP) and pulse volume recording (PVR) waveform signals pertaining to PAD present at the abdominal aorta with a wide range of severity levels using a mathematical model that simulates arterial blood circulation and arterial BP-PVR relationships. We developed a deep learning (DL)-enabled algorithm that can diagnose PAD by analyzing brachial and tibial PVR waveforms, and evaluated its efficacy in comparison with the same DL-enabled algorithm based on brachial and tibial arterial BP waveforms as well as the ankle-brachial index (ABI).
View Article and Find Full Text PDFThis paper presents a novel deep learning-based arterial pulse wave analysis (PWA) approach to diagnosis of peripheral artery occlusive disease (PAD). Naïve application of deep learning to PAD diagnosis can be hampered by the fact that securing a large amount of longitudinal dataset encompassing diverse PAD severity as well as anatomical and physiological variability presents formidable challenge. Training of a deep neural network (DNN) to a small training dataset raises the risk of overfitting the PAD diagnosis algorithm only to the individuals in the training dataset while deteriorating its ability to generalize also to other individuals who may exhibit a large variability in anatomical and physiological characteristics beyond the training dataset.
View Article and Find Full Text PDFToward the ultimate goal of affordable and non-invasive screening of peripheral occlusive artery disease (PAD), the objective of this work is to investigate the potential of deep learning-based arterial pulse waveform analysis in detecting and assessing the severity of PAD. Using an established transmission line model of arterial hemodynamics, a large number of virtual patients associated with PAD of a wide range of severity and the corresponding arterial pulse waveform data were created. A deep convolutional neural network capable of detecting and assessing the severity of PAD based on the analysis of brachial and ankle arterial pulse waveforms was constructed, evaluated for efficacy, and compared with the state-of-the-art ankle-brachial index (ABI) using the virtual patients.
View Article and Find Full Text PDF