The Maxwell equations-based 3D-analytical solution for the terahertz (THz) half-cycle electromagnetic wave transition radiation pulse has been found. This solution describes generation and propagation of transition radiation into free space from laser-produced relativistic electron bunch which crosses a target-vacuum interface as a result of ultrashort laser pulse interaction with a thin high-conductivity target. The analytical solution found complements the theory of laser initiated transition radiation.
View Article and Find Full Text PDFRelativistic collisionless shocks are considered responsible for particle energization mechanisms leading to particle acceleration. While electron energization in shock front region of electron/ion collisionless shocks are the most studied, the mechanism of electron energization in interaction with self-generated magnetic vortices (MVs) in the upstream region is still unclear. We investigate electron energization mechanism in the upstream region of electron/ion relativistic collisionless shocks, using two dimensional particle-in-cell (PIC) simulations.
View Article and Find Full Text PDFIn a dense gas plasma a short laser pulse propagates in a relativistic self-trapping mode, which enables the effective conversion of laser energy to the accelerated electrons. This regime sustains effective loading which maximizes the total charge of the accelerating electrons, that provides a large amount of betatron radiation. The three-dimensional particle-in-cell simulations demonstrate how such a regime triggers x-ray generation with 0.
View Article and Find Full Text PDFA significant step has been made towards understanding the physics of the transient surface current triggered by ejected electrons during the interaction of a short intense laser pulse with a high-conductivity target. Unlike the commonly discussed hypothesis of neutralization current generation as a result of the fast loss of hot electrons to the vacuum, the proposed mechanism is associated with excitation of the fast current by electric polarization due to transition radiation triggered by ejected electrons. We present a corresponding theoretical model and compare it with two simulation models using the finite-difference time-domain and particle-in-cell methods.
View Article and Find Full Text PDFDeeply modulated ion spectra from contaminants present on the target surface were measured at the interaction of ultraintense (2-5)×10^{20}W/cm^{2} and high-contrast laser pulses (≲10^{-10}) with thin (∼μm) and ultrathin (∼nm) targets. This phenomenon, observed over a wide range of laser and target parameters, suggests that it is a generic feature of multispecies ion acceleration at high laser pulse contrast. The modulation is ascribed to the acceleration of various ion species at the rear of the target with steplike density profiles which provide well-separated ion species in the accelerated beam.
View Article and Find Full Text PDFUsing the renormalization-group approach, we consider an analytic theory describing the formation of a self-focusing structure of a laser beam in a plasma with relativistic nonlinearity for a given radial intensity distribution at the entrance and derive approximate analytic solutions. We study three stationary self-focused waveguide propagation modes with respect to controlling laser-plasma parameters for a Gaussian radial intensity distribution at the plasma boundary. The proposed theory specifies the domains and their boundaries on the plane of the controlling parameters where (1) self-trapping, (2) self-focusing on the axis, and (3) tubular self-focusing solutions occur.
View Article and Find Full Text PDFThe use of gas cluster media as a target for an intense femtosecond laser pulses is considered to be uniquely convenient approach for the development of a compact versatile pulsed source of ionizing radiation. Also, one may consider cluster media as a nanolab to investigate fundamental issues of intense optical fields interaction with sub-wavelength scale structures. However, conventional diagnostic methods fail to register highly charged ion states from a cluster plasma because of strong recombination in the ambient gas.
View Article and Find Full Text PDFWe present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S(k[over ⃗],ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality.
View Article and Find Full Text PDFAn effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2012
Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution.
View Article and Find Full Text PDFA rigorous procedure is proposed for finding a solution to kinetic equations with the Landau electron-electron, electron-ion, ion-electron, and ion-ion collision integrals in fully ionized plasma. The linear plasma response to the perturbation in the electrostatic field is described in terms of plasma dielectric permittivity. Solutions of the dispersion relation for electron plasma waves, ion-acoustic waves, and entropy modes are found in the entire range of frequencies, wave vectors, and particle collisionality.
View Article and Find Full Text PDFThe ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed.
View Article and Find Full Text PDFThe propagation of ultraintense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two dimensional particle-in-cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.
View Article and Find Full Text PDFExperimental studies of electrons produced in a laser wakefield accelerator indicate trapping initiated by ionization of target gas atoms. Targets composed of helium and controlled amounts of various gases were found to increase the beam charge by as much as an order of magnitude compared to pure helium at the same electron density and decrease the beam divergence from 5.1+/-1.
View Article and Find Full Text PDFWe investigate the production of electron beams from the interaction of relativistically-intense laser pulses with a solid-density SiO(2) target in a regime where the laser pulse energy is approximately mJ and the repetition rate approximately kHz. The electron beam spatial distribution and spectrum were investigated as a function of the plasma scale length, which was varied by deliberately introducing a moderate-intensity prepulse. At the optimum scale length of lambda/2, the electrons are emitted in a collimated beam having a quasimonoenergetic distribution that peaked at approximately 0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2008
We consider the effect of laser beam shaping on proton acceleration in the interaction of a tightly focused pulse with ultrathin double-layer solid targets in the regime of directed Coulomb explosion. In this regime, the heavy ions of the front layer are forced by the laser to expand predominantly in the direction of the pulse propagation, forming a moving longitudinal charge separation electric field, thus increasing the effectiveness of acceleration of second-layer protons. The utilization of beam shaping, namely, the use of flat-top beams, leads to more efficient proton acceleration due to the increase of the longitudinal field.
View Article and Find Full Text PDFProton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10(-1) achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 10(22) W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions/light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.
View Article and Find Full Text PDFThe nonlinear evolution of the thermal Weibel instability is studied by using three-dimensional particle-in-cell simulations. After a fast saturation due to a reduction in the temperature anisotropy, the instability evolves to a quasistationary state which includes a single mode long wavelength helical magnetic field and a finite degree of temperature anisotropy. The nonlinear stability of this state is explained by periodic variations of the temperature anisotropy axis.
View Article and Find Full Text PDFA system of nonlocal electron transport equations for electrostatic perturbations in (omega,k) space in a high-Z plasma is derived from the Fokker-Planck equation for arbitrary relations between the time, space, and collisionality scales. The closed scheme for obtaining the longitudinal plasma susceptibility epsilon(omega,k) in the entire (omega,k) plane is proposed. Regions in the (omega,k) plane have been mapped for problems such as the relaxation of the local temperature enhancement with a time-dependent heat conductivity.
View Article and Find Full Text PDFWe present the first direct measurements of spatially and temporally resolved temperature and density profiles produced by nonlocal transport in a laser plasma. Absolutely calibrated measurements have been performed by Rayleigh scattering and by resolving the ion-acoustic wave spectra across the plasma volume with Thomson scattering. We find that the electron temperature and density profiles disagree with flux-limited models, but are consistent with nonlocal transport modeling.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2004
The electrostatic field at the solid-vacuum interface generated by two electron populations with different thermal energies, each following a Boltzmann distribution, is analytically derived from the Poisson equation and studied in terms of plasma parameters. In particular, the effect of the pressure of each of the two populations on the amplitude of the electric field and on its spatial extension is described. In order to evaluate the cold electron temperature, an analytical model for the Ohmic heating of the background electron population by laser generated fast electrons is developed and the consequences on ion detachment, ionization, and acceleration processes in laser-solid experiments are discussed.
View Article and Find Full Text PDFThe renormalization-group approach is applied to derive an exact solution to the self-consistent Vlasov kinetic equations for plasma particles in the quasineutral approximation. The solutions obtained describe three-dimensional adiabatic expansion of a plasma bunch with arbitrary initial velocity distributions of the electrons and ions. The solution found is illustrated by the examples on ion acceleration in a plasma with hot electrons and in a plasma with light impurity ions.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2003
Generation of relativistic electrons from the interaction of a laser pulse with a high density plasma foil, accompanied by an underdense preplasma in front of it, has been studied with two-dimensional particle-in-cell (PIC) simulations for pulse durations comparable to a single cycle and for single-wavelength spot size. The electrons are accelerated predominantly in forward direction for a preplasma longer than the pulse length. Otherwise, both forward and backward electron accelerations occur.
View Article and Find Full Text PDFWe observe strong anomalous absorption of green laser light in mm-scale high-temperature gold plasmas. Both the laser light absorption and the resulting increase of the electron temperature, which was measured independently with Thomson scattering, have been successfully modeled by including enhanced collisions due to heat-flux driven ion acoustic fluctuations. Calculations that include only inverse bremsstrahlung significantly underestimate the experimental laser absorption and the electron temperature.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
June 1999
Using interferometry, we investigate the dynamics of interaction of a relativistically intense 4-TW, 400-fs laser pulse with a He gas jet. We observe a stable plasma channel 1 mm long and less than 30 microm in diameter, with a radial gradient of electron density approximately 5 x 10(22) cm(-4) and with an on-axis electron density approximately ten times less than its maximum value of 8 x 10(19) cm(-3). A high radial velocity of the surrounding gas ionization of approximately 3.
View Article and Find Full Text PDF