Crystallin proteins are a class of main structural proteins of the vertebrate eye lens, and their solubility and stability directly determine transparency and refractive power of the lens. Mutation in genes that encode these crystallin proteins is the most common cause for congenital cataracts. Despite extensive studies, the pathogenic and molecular mechanisms that effect congenital cataracts remain unclear.
View Article and Find Full Text PDFBackground: At present, a large number of chronic obstructive pulmonary disease (COPD) patients are undiagnosed in China. Thus, this study aimed to develop a simple prediction model as a screening tool to identify patients at risk for COPD.
Methods: The study was based on the data of 22,943 subjects aged 30 to 79 years and enrolled in the second resurvey of China Kadoorie Biobank during 2012 and 2013 in China.
J Chem Theory Comput
November 2022
Panose is a type of functional sugar with diverse bioactivities. The enzymatic conversion bioprocess to produce high purity panose with high efficiency has become increasingly important. Here, a new neopullulanase (NPase), Amy117 from 703, was identified and characterized.
View Article and Find Full Text PDFViral RNA-dependent RNA polymerases (RdRPs) play central roles in the genome replication and transcription processes of RNA viruses. RdRPs initiate RNA synthesis either in primer-dependent or de novo mechanism, with the latter often assisted by a 'priming element' (PE) within the RdRP thumb domain. However, RdRP PEs exhibit high-level structural diversity, making it difficult to reconcile their conserved function in de novo initiation.
View Article and Find Full Text PDFCRISPR-Cas systems are bacterial anti-viral systems, and phages use anti-CRISPR proteins (Acrs) to inactivate these systems. Here, we report a novel mechanism by which AcrIF11 inhibits the type I-F CRISPR system. Our structural and biochemical studies demonstrate that AcrIF11 functions as a novel mono-ADP-ribosyltransferase (mART) to modify N250 of the Cas8f subunit, a residue required for recognition of the protospacer-adjacent motif, within the crRNA-guided surveillance (Csy) complex from Pseudomonas aeruginosa.
View Article and Find Full Text PDFAs a model pathogen, invades both phagocytic and non-phagocytic host cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection. Therefore, a systemic overview of adaptations to distinct host cells together with host remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the -host interplay are bacterial virulence factors (effectors) that are injected into host cells by type III secretion systems (T3SSs).
View Article and Find Full Text PDFAs the ortholog of human SR protein kinase 1 in fission yeast , Dsk1 specifically phosphorylates SR proteins (serine/arginine-rich proteins) and promotes splicing of nonconsensus introns. The SRPK (SR protein-specific kinase) family performs highly conserved functions in eukaryotic cells including cell proliferation, differentiation, development, and apoptosis. Although Dsk1 was originally identified as a mitotic regulator, its specific targets involved in cell cycle have yet been unexplored.
View Article and Find Full Text PDFObjectives: Bacterial persisters are a small subpopulation of cells that are highly tolerant of antibiotics and contribute to chronic and recalcitrant infections. Global gene expression in Pseudomonas aeruginosa persister cells and genes contributing to persister formation remain largely unknown. The objective of this study was to examine the gene expression profiles of the persister cells and those that regained growth in fresh medium, as well as to identify novel genes related to persister formation.
View Article and Find Full Text PDFAlternative pre-mRNA-splicing-induced post-transcriptional gene expression regulation is one of the pathways for tumors maintaining proliferation rates accompanying the malignant phenotype under stress. Here, we uncover a list of hyperacetylated proteins in the context of acutely reduced Acetyl-CoA levels under nutrient starvation. PHF5A, a component of U2 snRNPs, can be acetylated at lysine 29 in response to multiple cellular stresses, which is dependent on p300.
View Article and Find Full Text PDFEssential to bacterial pathogenesis, Salmonella enterica serovar Typhimurium ( Typhimurium) has evolved the capacity to quickly sense and adapt to specific intracellular environment within distinct host cells. Here we examined Typhimurium proteomic remodeling within macrophages, allowing direct comparison with our previous studies in epithelial cells. In addition to many shared features, our data revealed proteomic signatures highly specific to one type of host cells.
View Article and Find Full Text PDFis an important foodborne bacterial pathogen with infectious dose as low as 10-100 cells. SlyA, a transcriptional regulator of the MarR family, has been shown to regulate virulence in a closely related bacterial pathogen, Typhimurium. However, the regulatory role of SlyA in is less understood.
View Article and Find Full Text PDF