The light-harvesting (LH) and reaction center (RC) core complex of purple bacterium , B880-B800-RC, are different from those of the typical photosynthetic unit, (B850-B800)-B880-RC. To investigate the excitation flowing dynamics in this unique complex, two-dimensional electronic spectroscopy is employed. The obtained time constants for the exciton relaxation in B880, exciton relaxation in B800, B800 → B880 energy transfer (EET), and B880 → closed RC EET are 43 fs, 177 fs, 1.
View Article and Find Full Text PDFThe photosystem of filamentous anoxygenic phototroph (.) comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from .
View Article and Find Full Text PDFSinglet fission (SF) presents an attractive solution to overcome the Shockley-Queisser limit of single-junction solar cells. The conversion from an initial singlet state to final triplet is mediated by the correlated triplet pair state (TT). Despite significant advancement on (TT) properties and its role in SF, a comprehensive understanding of the energetic landscape during SF is still unclear.
View Article and Find Full Text PDFQuantum dephasing of excitonic transitions in CsPbBr nanocrystals has been studied using two-dimensional electronic spectroscopy at cryogenic temperatures. The exciton-phonon interactions for acoustic and optical modes exhibit different effects on the coherent dynamics of excitonic transitions. The homogeneous linewidth shows a proportional dependence on the temperature, suggesting the primary dephasing channel of the elastic scattering between exciton and acoustic modes.
View Article and Find Full Text PDFThe lifetimes of hot carriers have been predicted to be prolonged in small nanocrystals with an inter-level spacing larger than phonon energy. Nevertheless, whether such a phonon bottleneck is present in perovskite semiconductor nanocrystals remains highly controversial. Here we report compelling evidence of a phonon bottleneck in CsPbI nanocrystals with marked size-dependent relaxation of hot carriers by using broadband two-dimensional electronic spectroscopy (2DES).
View Article and Find Full Text PDFPerovskite semiconductor nanocrystals have emerged as an excellent family of materials for optoelectronic applications, where biexciton interaction is essential for optical gain generation and quantum light emission. However, the strength of biexciton interaction remains highly controversial due to the entangled spectral features of the exciton- and biexciton-related transitions in conventional measurement approaches. Here, we tackle the limitation by using polarization-dependent two-dimensional electronic spectroscopy and quantify the excitation energy-dependent biexciton binding energy at cryogenic temperatures.
View Article and Find Full Text PDF