Recent advancements in data analytics, predictive modeling, and optimization have highlighted the potential of integrating algal blooms (ABs) with Industry 4.0 technologies. Among these innovations, digital twins (DT) have gained prominence, driven by the rapid development of artificial intelligence (AI) and machine learning (ML) technologies, particularly those associated with the Internet of Things (IoT).
View Article and Find Full Text PDFWhile several studies have investigated the effect of varying carbon-to-nitrogen (C/N) ratios on the ANAMMOX performance, there is still a research gap in illustrating the shift in 16S rRNA gene copy number and functional microbial population during operation. Hence, this study focuses on utilizing a reference gene and target functional genes to demonstrate the synergetic interaction between ANAMMOX, ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB), using an up-flow anaerobic sludge blanket (UASB) under different C/N conditions. It was demonstrated that elevating the C/N ratio from 1.
View Article and Find Full Text PDFThe hormetic effects of antibiotics on Scenedesmus sp. werecompared with nitrogen limitationstrategies. We observed that 100 and 1000 nM supplementation with antibiotics could stimulate bothα-linolenic acid (ALA) and α-tocopherol productivities.
View Article and Find Full Text PDFManaged aquifer recharge (MAR) replenishes groundwater by artificially entering water into subsurface aquifers. This technology improves water storage, reduces over-extraction, and ensures water security in water-scarce or variable environments. MAR systems are complex, encompassing various components such as water storage, soil, meteorological factors, groundwater management (GWM), and receiving bodies.
View Article and Find Full Text PDFMicroplastics (MPs) pollution has emerged as a global environmental concern due to its detrimental impacts on ecosystems. Conventional wastewater/water treatment methods are inadequate for MPs removal due to their diminutive size ranging from micrometers to nanometers. Advanced oxidation processes (AOPs) have gained attention as a promising green strategy for the efficient and safe elimination of MPs from aqueous systems.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) derived from microalgae are considered a promising alternative bioplastic material to replace synthetic plastics. This study evaluated the effects of various drying techniques (sun, freeze, oven and air drying) on PHB recovery from microalgae. Freeze drying recovered the maximum PHBs (6.
View Article and Find Full Text PDFWastewater-based epidemiology (WBE) is a valuable disease surveillance tool. However, little is known on how factors such as transportation, storage, and wastewater characteristics influence the accuracy of the quantification methods. Hence, this study investigated the impact of storage temperatures and physicochemical characteristics of wastewater on SARS-CoV-2 and influenza A stability using droplet digital PCR.
View Article and Find Full Text PDFThe degradation of persistent and refractory pollutants, particularly plastic and resins manufacturing wastewater, poses a significant challenge due to their high toxicity and high concentrations. This study developed a novel hybrid ACoO (A = La, Ce, Sr)/PMS perovskite system for the treatment of multicomponent (MCs; ACN, ACM and ACY) from synthetic resin manufacturing wastewater. Synthesized perovskites were characterized by various techniques i.
View Article and Find Full Text PDFAlgae cultivation and bioprocessing are important due to algae's potential to effectively tackle crucial environmental challenges like climate change, soil and water pollution, energy security, and food scarcity. To realize these benefits high algal biomass production and valuable compound extraction are necessary. Nanotechnology can significantly improve algal cultivation through enhanced nutrient uptake, catalysis, CO utilization, real-time monitoring, cost-effective harvesting, etc.
View Article and Find Full Text PDFIncreasing amounts of wastewater is the most pervasive and challenging environmental problem globally. Conventional treatment methods are costly and entail huge energy, carbon consumption and greenhouse gas emissions. Owing to their unique ability of carbon capturing and resource recovery, microalgae-microbiome based treatment is a potential approach and is widely used for carbon-neutral wastewater treatment.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2024
The excessive global demand for plastic materials has resulted in severe plastic waste pollution. Conventional plastics derived from non-renewable fossil fuels are non-biodegradable, leading to significant environmental problems. Algal-based bioplastics represent a more viable, renewable, and sustainable alternative to conventional plastics.
View Article and Find Full Text PDFThis study focuses on the removal and risk assessment of twenty emerging contaminants (ECs) and heavy metals in a REMIX water treatment plant (RWTP) that produces drinking water from combination of wastewater reuse and desalination. The membrane biological reactor (MBR) exhibit removal rates exceeding 95% of pharmaceuticals like acetaminophen, trimethoprim, diclofenac, naproxen, and emtricitabine. The efficiency of brackish reverse osmosis (BWRO) in removing ECs is highlighted, showing substantial efficacy with reduction rates of 99.
View Article and Find Full Text PDFWastewater-based epidemiology (WBE) is a robust tool for disease surveillance and monitoring of pharmaceutical consumption. However, monitoring tuberculosis (TB) drug consumption faces challenges due to limited data availability. This study aimed to optimise methods for detecting TB drugs in treated and untreated wastewater from four African countries: South Africa, Nigeria, Kenya, and Cameroon.
View Article and Find Full Text PDFPhosphorus in wastewater poses a significant environmental threat, leading to water pollution and eutrophication. However, it plays a crucial role in the water-energy-resource recovery-environment (WERE) nexus. Recovering Phosphorus from wastewater can close the phosphorus loop, supporting circular economy principles by reusing it as fertilizer or in industrial applications.
View Article and Find Full Text PDFFree living amoeba (FLA) are among the organisms commonly found in wastewater and are well-established hosts for diverse microbial communities. Despite its clinical significance, there is little knowledge on the FLA microbiome and resistome, with previous studies relying mostly on conventional approaches. In this study we comprehensively analyzed the microbiome, antibiotic resistome and virulence factors (VFs) within FLA isolated from final treated effluents of two wastewater treatment plants (WWTPs) using shotgun metagenomics.
View Article and Find Full Text PDFAn integrated approach to nutrient recycling utilizing microalgae could provide feasible solutions for both environmental control and energy production. In this study, an axenic microalgae strain, Chlorella sorokiniana ASK25 was evaluated for its potential as a biofuel feedstock and textile wastewater (TWW) treatment. The microalgae isolate was grown on TWW supplemented with different proportions of standard BG-11 medium varying from 0 to 100% (v/v).
View Article and Find Full Text PDFAir conditioners alleviate the discomfort of human beings from heat waves that are consequences of climate change caused by anthropogenic activities. With each passing year, the effects of global warming worsen, increasing the growth of air conditioning industry. Air conditioning units produce substantial amounts of non-nutritive and (generally) neglected condensate water and greenhouse gases.
View Article and Find Full Text PDFDespite extensive research, little is known about the composition of eukaryotic protists in environmental samples. This is due to low parasite concentrations, the complexity of parasite diversity, and a lack of suitable reference databases and standardized protocols. To bridge this knowledge gap, this study used 18S rRNA short amplicon and shotgun metagenomic sequencing approaches to profile protozoan microbial communities as well as their functional pathways in treated and untreated wastewater samples collected from different regions of South Africa.
View Article and Find Full Text PDFThe One-Health approach recognizes the intricate connection between human, animal, and environmental health, and that cooperative effort from various professionals provides comprehensive awareness and potential solutions for issues relating to the health of people, animals, and the environment. This approach has increasingly gained appeal as the standard strategy for tackling emerging infectious diseases, most of which are zoonoses. Treatment with anthelmintics (AHs) without a doubt minimizes the severe consequences of soil-transmitted helminths (STHs); however, evidence of anthelmintic resistance (AR) development to different helminths of practically every animal species and the distinct groups of AHs is overwhelming globally.
View Article and Find Full Text PDFThe spread of multidrug-resistant tuberculosis (MDR-TB) is a serious public health issue, particularly in developing nations. The current methods of monitoring drug-resistant TB (DR-TB) using clinical diagnoses and hospital records are insufficient due to limited healthcare access and underreporting. This study proposes using Wastewater-Based Epidemiology (WBE) to monitor DR-TB in six African countries (Ghana, Nigeria, Kenya, Uganda, Cameroon, and South Africa) and examines the impact of treated wastewater on the spread of TB drug-resistant genes in the environment.
View Article and Find Full Text PDFThe uptake of wastewater-based epidemiology (WBE) for SARS-CoV-2 as a complementary tool for monitoring population-level epidemiological features of the COVID-19 pandemic in low-and-middle-income countries (LMICs) is low. We report on the findings from the South African SARS-CoV-2 WBE surveillance network and make recommendations regarding the implementation of WBE in LMICs. Eight laboratories quantified influent wastewater collected from 87 wastewater treatment plants in all nine South African provinces from 01 June 2021 to 31 May 2022 inclusive, during the 3rd and 4th waves of COVID-19.
View Article and Find Full Text PDFTuberculosis (TB) remains a persistent challenge to public health and presents a substantial menace, especially in developing nations of sub-Saharan Africa. It exerts a considerable strain on healthcare systems in these regions. Effective control requires reliable surveillance, which can be improved by incorporating environmental data alongside clinical data.
View Article and Find Full Text PDFNitrogen has traditionally been removed from wastewater by nitrification and denitrification processes, in which organic carbon has been used as an electron donor during denitrification. However, some wastewaters contain low concentrations of organic carbon, which may require external organic carbon supply, increasing treatment costs. As a result, processes such as partial nitrification/anammox (anaerobic ammonium oxidation) (PN/A), autotrophic denitrification, nitritation-denitritation and bioelectrochemical processes have been studied as possible alternatives, and are thus evaluated in this study based on process kinetics, applicability at large-scale and process configuration.
View Article and Find Full Text PDFRemediation of the antiretroviral (ARV) drug, nevirapine (NVP) has attracted considerable scientific attention in recent years due to its frequent detection and persistence in aquatic environments and potential hazards to living organisms. Algae-based technologies have been emerging as an environmentally friendly option for the removal of pharmaceutical compounds, but their ARV drug removal potential has not been fully explored yet. This study aimed to explore the ecotoxicity and removal potential of NVP by two microalgal species, Coelastrella tenuitheca and Tetradesmus obliquus.
View Article and Find Full Text PDF