Publications by authors named "Buvoli M"

Proline substitutions within the coiled-coil rod region of the β-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption.

View Article and Find Full Text PDF

Background Although the roles of alpha-myosin heavy chain (α-MyHC) and beta-myosin heavy chain (β-MyHC) proteins in cardiac contractility have long been appreciated, the biological contribution of another closely related sarcomeric myosin family member, MYH7b (myosin heavy chain 7b), has become a matter of debate. In mammals, MYH7b mRNA is transcribed but undergoes non-productive alternative splicing that prevents protein expression in a tissue-specific manner, including in the heart. However, several studies have recently linked MYH7b variants to different cardiomyopathies or have reported MYH7b protein expression in mammalian hearts.

View Article and Find Full Text PDF

Background: Myogenesis is driven by specific changes in the transcriptome that occur during the different stages of muscle differentiation. In addition to controlled transcriptional transitions, several other post-transcriptional mechanisms direct muscle differentiation. Both alternative splicing and miRNA activity regulate gene expression and production of specialized protein isoforms.

View Article and Find Full Text PDF

Background In mammals, muscle contraction is controlled by a family of 10 sarcomeric myosin motors. The expression of one of its members, MYH7b, is regulated by alternative splicing, and while the protein is restricted to specialized muscles such as extraocular muscles or muscle spindles, RNA that cannot encode protein is expressed in most skeletal muscles and in the heart. Remarkably, birds and snakes express MYH7b protein in both heart and skeletal muscles.

View Article and Find Full Text PDF

Background: Human skeletal muscles express three major myosin heavy chain (MyHC) isoforms: MyHCIIx (MYH1) in fast type 2B muscle fibers, MyHCIIa (MYH2) in fast type 2A fibers and MyHCI/β-cardiac MyHC (MYH7) in slow type I skeletal fibers and cardiac ventricles. In line with its expression pattern, MYH7 mutations have been reported in association with hypertrophic or dilated cardiomyopathy, skeletal myopathies or a combination of both. We analyzed the clinical and molecular phenotype of two unrelated families of Jewish Moroccan ancestry that presented with apparently autosomal dominant inheritance of progressive Laing-like distal myopathy with non-specific myopathic changes, but uncommon marked contractures and wasting of the neck extensors.

View Article and Find Full Text PDF

The rod of sarcomeric myosins directs thick filament assembly and is characterized by the insertion of four skip residues that introduce discontinuities in the coiled-coil heptad repeats. We report here that the regions surrounding the first three skip residues share high structural similarity despite their low sequence homology. Near each of these skip residues, the coiled-coil transitions to a nonclose-packed structure inducing local relaxation of the superhelical pitch.

View Article and Find Full Text PDF

Myosin has an intrinsic ability to organize into ordered thick filaments that mediate muscle contraction. Here, we use surface plasmon resonance and light scattering analysis to further characterize the molecular determinants that guide myosin filament assembly. Both assays identify a cluster of lysine and arginine residues as important for myosin polymerization in vitro.

View Article and Find Full Text PDF

Laing distal myopathy (MPD1) is a genetically dominant myopathy characterized by early and selective weakness of the distal muscles. Mutations in the MYH7 gene encoding for the β-myosin heavy chain are the underlying genetic cause of MPD1. However, their pathogenic mechanisms are currently unknown.

View Article and Find Full Text PDF

The ancient MYH7b gene, expressed in striated muscle and brain, encodes a sarcomeric myosin and the intronic microRNA miR-499. We find that skipping of an exon introduces a premature termination codon in the transcript that downregulates MYH7b protein production without affecting microRNA expression. Among other genes, endogenous miR-499 targets the 3' untranslated region of the transcription factor Sox6, which in turn acts as a repressor of MYH7b transcriptional activity.

View Article and Find Full Text PDF

The steady discovery of new β-myosin mutations causing familial hypertrophic cardiomyopathy (FHCM) suggests that only a fraction of the total number of mutations has been identified so far by clinical screenings. To test this hypothesis, data derived from seven independent genetic studies were re-analyzed using statistical methods developed by ecologists for estimating the number of species in a community. This novel approach reveals that more mutations will continue to be identified as more patients are genotyped, and highlights important differences in the distribution of β-myosin mutations across different populations.

View Article and Find Full Text PDF

More than 200 mutations in the beta-myosin gene (MYH7) that cause clinically distinct cardiac and/or skeletal myopathies have been reported, but to date, no comprehensive statistical analysis of these mutations has been performed. As a part of this review, we developed a new interactive database and research tool called MyoMAPR (Myopathic Mutation Analysis Profiler and Repository). We report that the distribution of mutations along the beta-myosin gene is not homogeneous, and that myosin is a highly constrained molecule with an uncommon sensitivity to amino acid substitutions.

View Article and Find Full Text PDF

Neonatal rat ventricular myocytes (NRVMs) cultured in vitro have been used as a model system for easily recreating and studying several cardiac molecular conditions, such as hypertrophy, oxygen deprivation, and gene expression. However, low efficiency of gene transfer has often represented one of the major limitations of this technique. In this chapter we describe in detail how to isolate NRVMs from neonatal rat heart and the optimal conditions for their long-term culture.

View Article and Find Full Text PDF

Background: Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5' and 3' splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern.

View Article and Find Full Text PDF

The presence of adenoviral cis-elements interfering with the activity of tissue-specific promoters has seriously impaired the use of transcriptional targeting adenoviruses for gene therapy purposes. As an approach to overcome this limitation, transcription terminators were previously employed in cultured cells to insulate a transgene promoter from viral activation. To extend these studies in vivo, we have injected into heart and skeletal muscle, adenoviruses containing the human growth hormone terminator and the cardiac-specific alpha-myosin heavy chain promoter (alphaMyHC) driving the chloramphenicol acetyltransferase (CAT) reporter gene.

View Article and Find Full Text PDF

A method that greatly enhances the detection of tRNA by oligodeoxyribonucleotide probe hybridization has been developed. Because highly structured tRNA regions often preclude heteroduplex formation, we have tested the ability of cold oligodeoxyribonucleotides called unfolders to disrupt the tRNA secondary/tertiary structures and promote hybridization of a second labeled oligonucleotide complementary to the anticodon loop. Here we show that an excess of unfolders in the pre/hybridization reaction can enhance a barely detectable hybridization signal by more than 200-fold without affecting probe specificity.

View Article and Find Full Text PDF

We demonstrate here the first experimental suppression of a premature termination codon in vivo by using an ochre suppressor tRNA acting in an intact mouse. Multicopy tRNA expression plasmids were directly injected into skeletal muscle and into the hearts of transgenic mice carrying a reporter gene with an ochre mutation. A strategy for modulation of suppressor efficiency, applicable to diverse systems and based on tandem multimerization of the tRNA gene, is developed.

View Article and Find Full Text PDF

We have identified four purine-rich sequences that act as splicing enhancer elements to activate the weak 3' splice site of alpha-tropomyosin exon 2. These elements also activate the splicing of heterologous substrates containing weak 3' splice sites or mutated 5' splice sites. However, they are unique in that they can activate splicing whether they are placed in an upstream or downstream exon, and the two central elements can function regardless of their position relative to one another.

View Article and Find Full Text PDF

We recently identified enhancer elements that activate the weak 3' splice site of alpha-tropomyosin exon 2 as well as a variety of heterologous weak 3' splice sites. To understand their mechanism of action, we devised an iterative selection strategy to identify functional pyrimidine tracts and branchpoint sequences in the presence or absence of enhancer elements. Surprisingly, we found that strong pyrimidine tracts were selected regardless of the presence of enhancer elements.

View Article and Find Full Text PDF

The mdx mouse is an animal model for human Duchenne muscular dystrophy. The lack of dystrophin in mdx mice is caused by an ochre mutation in exon 23 of the dystrophin gene. This study tested the feasibility of inhibiting translational termination as an approach for genetic therapy for diseases caused by nonsense mutations.

View Article and Find Full Text PDF

Spliceosome-associated proteins (SAPs) 61, 62, and 114 can be UV-crosslinked to pre-mRNA in purified spliceosomal complexes and are associated with U2 small nuclear ribonucleoproteins (snRNP). These proteins also compose the essential heterotrimeric splicing factor SF3a, and products of yeast pre-mRNA processing genes PRP9, PRP11, and PRP21 are their likely yeast counterparts. We report the isolation of a cDNA encoding SAP 61 and find that it is 30% identical in amino acid sequence to PRP9.

View Article and Find Full Text PDF

hnRNP protein A1 (34 kDa, pl 9.5) is a prominent member of the family of proteins (hnRNP proteins) that associate with the nascent transcripts of RNA polymerase II and that accompany the hnRNA through the maturation process and the export to the cytoplasm. New evidence suggests an active and specific role for some of these proteins, including protein A1, in splicing and transport.

View Article and Find Full Text PDF