The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand.
View Article and Find Full Text PDFOxalacetate acetylhydrolase (OAH), a member of the phosphoenolpyruvate mutase/isocitrate lyase superfamily, catalyzes the hydrolysis of oxalacetate to oxalic acid and acetate. This study shows that knock-out of the oah gene in Cryphonectria parasitica, the chestnut blight fungus, reduces the ability of the fungus to form cankers on chestnut trees, suggesting that OAH plays a key role in virulence. OAH was produced in Escherichia coli and purified, and its catalytic rates were determined.
View Article and Find Full Text PDFThe Aspergillus niger genome contains four genes that encode proteins exhibiting greater than 30% amino acid sequence identity to the confirmed oxaloacetate acetyl hydrolase (OAH), an enzyme that belongs to the phosphoenolpyruvate mutase/isocitrate lyase superfamily. Previous studies have shown that a mutant A. niger strain lacking the OAH gene does not produce oxalate.
View Article and Find Full Text PDFPseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family alpha-oxyanion carboxylate intermediate/transition state) and Mg2+ was determined at 1.
View Article and Find Full Text PDF