New azahelicenes having interesting photophysical properties have been prepared in a four-step sequence. These [7]helicenocarbazoles are efficient blue luminophores, demonstrating the utility of gold catalysis in the preparation of advanced materials.
View Article and Find Full Text PDFSickle cell disease is an inherited hemoglobinopathy associated with significant morbidity and mortality. Reports suggest a high sickle cell disease burden among the indigenous Tharu population of Nepal, who for centuries have inhabited regions where malaria is endemic. Unfortunately, health care resources are limited and often inaccessible for Tharu individuals suffering from sickle cell disease.
View Article and Find Full Text PDFA selective and convenient synthesis of tri- and tetrasubstituted α,β-unsaturated ketones, as well as 2,3-diarylbenzofurans has been developed with the aid of light and taking advantage of a cooperative gold/photoredox-catalyzed 2-fold arylation reaction of TMS-terminated alkynols. The reaction of 3-(trimethylsilyl)prop-2-yn-1-ols was competent to generate diarylated α,β-unsaturated ketones; whereas the photoredox sequence involving 2-[(trimethylsilyl)ethynyl]phenol exclusively afforded 2,3-diarylbenzofurans. The reaction of terminal alkynes proceeded in poor yields while the use of bulkier silyl groups, such as TIPS, resulted unproductive.
View Article and Find Full Text PDFOrganofluorine compounds have become important building blocks for a broad range of advanced materials, polymers, agrochemicals, and increasingly for pharmaceuticals. Despite tremendous progress within the area of fluorination chemistry, methods for the direct introduction of fluoroalkyl-groups into organic molecules without prefunctionalization are still highly desired. Here we present a concept for the introduction of the trifluoromethyl group into unprotected phenols by employing a biocatalyst (laccase), tBuOOH, and either the Langlois' reagent or Baran's zinc sulfinate.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2015
Readily available substituted phenols were coupled with pyruvate in buffer solution under atmospheric conditions to afford the corresponding para-vinylphenol derivatives while releasing only one molecule of CO2 and water as the by-products. This transformation was achieved by designing a biocatalytic system that combines three biocatalytic steps, namely the C-C coupling of phenol and pyruvate in the presence of ammonia, which leads to the corresponding tyrosine derivative, followed by deamination and decarboxylation. The biocatalytic transformation proceeded with high regioselectivity and afforded exclusively the desired para products.
View Article and Find Full Text PDFA versatile and general route has been developed for the asymmetric synthesis of a wide family of 3-methyl-3,4-dihydro-2H-benzo[b][1,4]oxazines bearing different pattern substitutions in the aromatic ring. Whereas hydrolases were not suitable for resolution of these racemic cyclic nitrogenated amines, alternative chemoenzymatic strategies were designed through independent pathways leading to both amine antipodes. On one hand, bioreduction of 1-(2-nitrophenoxy)propan-2-ones allowed the recovery of the enantiopure (S)-alcohols in high yields using the alcohol dehydrogenase from Rhodococcus ruber (ADH-A), whereas evo-1.
View Article and Find Full Text PDFCombinatorial assembly and variation of promoters on a single expression plasmid allowed the balance of the catalytic steps of a three enzyme (l-AAD, HIC, FDH) cascade in E. coli. The designer cell catalyst quantitatively transformed l-amino acids to the corresponding optically pure (R)- and (S)-α-hydroxy acids at up to 200 mM substrate concentration.
View Article and Find Full Text PDFAn efficient route for the synthesis of all four diastereomers of PMP-protected α-amino-γ-butyrolacton to access γ-hydroxynorvaline was established. The asymmetric key steps comprise an organocatalytic Mannich reaction and an enzymatic ketone reduction. Three reaction steps could be integrated in a one-pot process, using 2-PrOH both as solvent and as reducing agent.
View Article and Find Full Text PDFNatural L-α-amino acids and L-norleucine were transformed to the corresponding α-hydroxy acids by formal biocatalytic inversion or retention of absolute configuration. The one-pot transformation was achieved by a concurrent oxidation reduction cascade in aqueous media. A representative panel of enantiopure (R)- and (S)-2-hydroxy acids possessing aliphatic, aromatic and heteroaromatic moieties were isolated in high yield (67-85 %) and enantiopure form (>99 % ee) without requiring chromatographic purification.
View Article and Find Full Text PDFTwo polymeric ionic liquids, 3-(but-3″-en-1″-yl)-1-[2'-hydroxycyclohexyl]-1H-imidazol-3-ium bis(trifluoromethanesulfonyl)imide (IL-1) and 1-(2'-hydroxycyclohexyl)-3-(4″-vinylbenzyl)-1H-imidazol-3-ium bis(trifluoromethylsulfonyl)imide (IL-2), have been synthesized by a free radical polymerization reaction and used as coatings for solid-phase microextraction (SPME). These new fibers exhibit good film stability, high thermal stability (270-290°C) and long lifetimes, and are used for the extraction of volatile compounds in lemon beer using gas chromatography separation and flame ionization detection. The scanning electron micrographs of the fiber surface revealed a polymeric ionic liquid (PIL) film, which is distributed homogeneously on the fiber.
View Article and Find Full Text PDFA straightforward chemoenzymatic synthesis of enantiopure 4-alkyl-3-methyl-3,4-dihydroisocoumarins through a ketoreductase-catalyzed one-pot dynamic reductive kinetic resolution is reported. E. coli/ADH-A cells have shown outstanding diastereo- and enantioselectivity toward the bioreduction of a series of racemic ketones, with the use of anion exchange resins or triethylamine being compatible in the same aqueous reaction medium.
View Article and Find Full Text PDFAn exhaustive experimental study based on X-ray diffraction analysis, NMR, FTIR-ATR (attenuated total reflection), and Raman spectroscopy as well as theoretical calculations is reported in order to understand how the non-covalent intermolecular contacts are fundamental to explain structure-property relationships and allowing us to correlate a basic macroscopic property (i.e., the melting point, T(m)) with the structural variables of a family of enantiopure 1,4-dialkyl-1,2,4-triazolium salts.
View Article and Find Full Text PDFRacemic indolines including a variety of structural motifs such as C-2 and C-3 substitutions (alkyl or aryl), cis/trans relative stereochemistry and functionalization of the aromatic ring (fluoro, methyl or methoxy groups) have been efficiently prepared through Fischer indolization and subsequent diastereoselective reduction of the unprotected indoles. Combination of Candida antarctica lipase type A and allyl 3-methoxyphenyl carbonate has been identified as the best tandem for their kinetic resolutions, observing excellent stereodiscriminations for most of the tested indolines.
View Article and Find Full Text PDFA chemoenzymatic asymmetric route for the preparation of enantiopure (R)-ramatroban has been developed for the first time. The action of lipases and oxidoreductases has been independently studied, and both were found as excellent biocatalysts for the production of adequate chiral intermediates under very mild reaction conditions. CAL-B efficiently catalyzed the resolution of (±)-2,3,4,9-tetrahydro-1H-carbazol-3-ol that was acylated with high stereocontrol.
View Article and Find Full Text PDFSeven new functionalized polymerizable ionic liquids were chemically prepared, and later applied for the preparation of polymeric stationary phases in gas chromatography. These coated GC columns, which exhibited good thermal stabilities (240-300°C) and very high efficiencies (3120-4200 plates/m), have been characterized using the Abraham solvation parameter model. The chromatographic behavior of these polymeric IL columns has been deeply studied observing excellent selectivities in the separation of many organic substances such as alkanes, ketones, alcohols, amines or esters in mixtures of polar and non polar solvents or fragrances.
View Article and Find Full Text PDFA straightforward synthesis of (S)-3-methylphthalides has been developed, with the key asymmetric step being the bioreduction of 2-acetylbenzonitriles. Enzymatic processes have been found to be highly dependent on the pH value, with acidic conditions being required to avoid undesired side reactions. Baker's yeast was found to be the best biocatalyst acting in a highly stereoselective fashion.
View Article and Find Full Text PDFPolycationic ionic liquids (ILs) are an attractive class of ILs with great potential applicability as gas chromatography stationary phases. A family of hexacationic imidazolium ILs derived from the cycloalkanol family was chemically first prepared in a straightforward manner and then applied for analytical separation purposes. Four tuneable engineering vectors, namely cation ring size structure, anion nature, spatial disposition of cycloalkanol substituents and O-substitution, were considered as experimental parameters for the design of the desired ionic liquids.
View Article and Find Full Text PDFObjective: To review presentation, diagnosis and treatment of renal artery aneurysms, a very uncommon disease.
Methods: We report the case of a male with a calcified renal artery aneurysm in a solitary kidney.
Results: Symptomatic effects may be hypertension, hematuria or flank pain.
T cells recognize antigens via their cell surface TCR and are classified as either αβ or γδ depending on the variable chains in their TCR, α and β or γ and δ, respectively. Both αβ and γδ TCRs also contain several invariant chains, including CD3δ, which support surface TCR expression and transduce the TCR signal. Mutations in variable chains would be expected to affect a single T cell lineage, while mutations in the invariant chains would affect all T cells.
View Article and Find Full Text PDFAntigen recognition by T-lymphocytes through the T-cell antigen receptor, TCR-CD3, is a central event in the initiation of an immune response. CD3 proteins may have redundant as well as specific contributions to the intracellular propagation of TCR-mediated signals. However, to date, the relative role that each CD3 chain plays in signaling is controversial.
View Article and Find Full Text PDFA novel family of prochiral pentane-1,5-diamines has been efficiently synthesized, possessing stabilities significantly higher than those of corresponding propane-1,3-diamine analogues. Diamines have been later desymmetrized using Pseudomonas cepacia lipase as an efficient biocatalyst for the mono- but also stereoselective protection of one of their amino groups. Reaction parameters such as type and loading of enzyme, temperature, solvent, and acyl donor have been exhaustively analyzed, searching for optimal conditions for the production of interesting optically active nitrogenated compounds.
View Article and Find Full Text PDFA simple and novel chemoenzymatic route has been applied for the first time in the synthesis of miconazole and econazole single enantiomers. Lipases and oxidoreductases have been tested in stereoselective processes; the best results were attained with oxidoreductases for the introduction of chirality in an adequate intermediate. The behaviors of a series of ketones and racemic alcohols in bioreductions and acetylation procedures, respectively, have been investigated; the best results were found with alcohol dehydrogenases A and T, which allowed the production of (R)-2-chloro-1-(2,4-dichlorophenyl)ethanol in enantiopure form under very mild reaction conditions.
View Article and Find Full Text PDFTwo ionic liquids (ILs), namely (S,S)-1-butyl-3-(2'-hydroxy-cyclohexyl)-3H-imidazol-1-ium tetrafluoroborate and (S,S)-1-butyl-3-(2'-acetyl-cyclohexyl)-3H-imidazol-1-ium tetrafluoroborate have been employed as stationary phases in capillary gas chromatography. These new phases exhibit a column efficiency of 1,600 and 2,100 plates m(-1) for IL 1 and IL 2, respectively, a wide operating temperature range and good thermal stability (bleeding temperature of 250 °C for IL 1 and 160 °C for IL 2). Inverse gas chromatography (GC) analyses were used to study the solvation properties of these ILs through a linear solvation energy model.
View Article and Find Full Text PDF