Tumor-associated macrophages (TAMs) are one of the most abundant cell types in the colorectal cancer (CRC) tumor microenvironment (TME). CRC cell-derived exosomes support macrophage polarization toward an M2-like phenotype, which leads to tumor growth and metastasis. Neuroligin 1 (NLG1) is a transmembrane protein critical in synaptic function.
View Article and Find Full Text PDFMalignant melanoma is an aggressive cancer, with a high risk of metastasis and mortality rates, characterized by cancer cell heterogeneity and complex tumor microenvironment (TME). Single cell biology is an ideal and powerful tool to address these features at a molecular level. However, this approach requires enzymatic cell dissociation that can influence cellular coverage.
View Article and Find Full Text PDFBackground: In non-small cell lung cancer (NSCLC) the efficacy of chemo-immunotherapy is affected by the high expression of drug efflux transporters as ABCC1 and by the low expression of ABCA1, mediating the isopentenyl pyrophosphate (IPP)-dependent anti-tumor activation of Vγ9Vδ2 T-lymphocytes. In endothelial cells ABCA1 is a predicted target of the transcription factor EB (TFEB), but no data exists on the correlation between TFEB and ABC transporters involved in the chemo-immuno-resistance in NSCLC.
Methods: The impact of TFEB/ABCC1/ABCA1 expression on NSCLC patients' survival was analyzed in the TCGA-LUAD cohort and in a retrospective cohort of our institution.
Various human diseases are triggered by molecular alterations influencing the fine-tuned expression and activity of transcription factors, usually due to imbalances in targets including protein-coding genes and non-coding RNAs, such as microRNAs (miRNAs). The transcription factor EB (TFEB) modulates human cellular networks, overseeing lysosomal biogenesis and function, plasma-membrane trafficking, autophagic flux, and cell cycle progression. In endothelial cells (ECs), TFEB is essential for the maintenance of endothelial integrity and function, ensuring vascular health.
View Article and Find Full Text PDFGlial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a tumor with a dismal prognosis that arises from precursor lesions called pancreatic intraepithelial neoplasias (PanINs). Progression from low- to high-grade PanINs is considered as tumor initiation, and a deeper understanding of this switch is needed. Here, we show that synaptic molecule neuroligin-2 (NLGN2) is expressed by pancreatic exocrine cells and plays a crucial role in the regulation of contact inhibition and epithelial polarity, which characterize the switch from low- to high-grade PanIN.
View Article and Find Full Text PDFExpert Opin Drug Deliv
December 2023
Introduction: Prostate cancer (PCa) is one of the most prevalent cancers in the world, and the fifth cause of death from cancer in men. Among the non-surgical treatments for PCa, gene therapy strategies are in the early stages of development and recent clinical trials have provided new insights suggesting promising future.
Areas Covered: Recently, the creation of targeted gene delivery systems, based on specific PCa cell surface markers, has been viewed as a viable therapeutic approach.
X-ray computed microtomography (µCT) is a powerful tool to reveal the 3D structure of tissues and organs. Compared with the traditional sectioning, staining, and microscopy image acquisition, it allows a better understanding of the morphology and a precise morphometric analysis. Here, we describe a method for 3D visualization and morphometric analysis by µCT scanning of the embryonic heart of iodine-stained E15.
View Article and Find Full Text PDFThe introduction of targeted therapies represented one of the most significant advances in the treatment of BRAFV600E melanoma. However, the onset of acquired resistance remains a challenge. Previously, we showed in mouse xenografts that vascular endothelial growth factor (VEGFA) removal enhanced the antitumor effect of BRAF inhibition through the recruitment of M1 macrophages.
View Article and Find Full Text PDFRecent advances in machine learning research, combined with the reduced sequencing costs enabled by modern next-generation sequencing, paved the way to the implementation of precision medicine through routine multi-omics molecular profiling of tumours. Thus, there is an emerging need of reliable models exploiting such data to retrieve clinically useful information. Here, we introduce an original consensus clustering approach, overcoming the intrinsic instability of common clustering methods based on molecular data.
View Article and Find Full Text PDFMelanomas are characterised by accelerated cell proliferation and metabolic reprogramming resulting from the contemporary dysregulation of the MAPK pathway, glycolysis and the tricarboxylic acid (TCA) cycle. Here, we suggest that the oncogenic transcription factor EB (TFEB), a key regulator of lysosomal biogenesis and function, controls melanoma tumour growth through a transcriptional programme targeting ERK1/2 activity and glucose, glutamine and cholesterol metabolism. Mechanistically, TFEB binds and negatively regulates the promoter of DUSP-1, which dephosphorylates ERK1/2.
View Article and Find Full Text PDFEndothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults.
View Article and Find Full Text PDFWe propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a complex and pivotal process involved in organogenesis and is related to several pathological processes, including cancer and fibrosis. During heart development, EMT mediates the conversion of epicardial cells into vascular smooth muscle cells and cardiac interstitial fibroblasts. Here, we show that the oncogenic transcription factor EB (TFEB) is a key regulator of EMT in epicardial cells and that its genetic overexpression in mouse epicardium is lethal due to heart defects linked to impaired EMT.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) remains largely incurable when diagnosed at the metastatic stage. Despite some advances in precision medicine for this disease in recent years, new molecular targets, as well as prognostic/predictive markers, are highly needed. Neuroligin 1 (NLGN1) is a transmembrane protein that interacts at the synapse with the tumor suppressor adenomatous polyposis Coli (APC), which is heavily involved in the pathogenesis of CRC and is a key player in the WNT/β-catenin pathway.
View Article and Find Full Text PDFTranscription factor EB (TFEB) belongs to the microphthalmia family of bHLH-leucine zipper transcription factors and was first identified as an oncogene in a subset of renal cell carcinomas. In addition to exhibiting oncogenic activity, TFEB coordinates genetic programs connected with the cellular response to stress conditions, including roles in lysosome biogenesis, autophagy, and modulation of metabolism. As is the case for other transcription factors, the activities of TFEB are not limited to a specific cellular condition such as the response to stress, and recent findings indicate that TFEB has more widespread functions.
View Article and Find Full Text PDFLung cancers account for over 90% of thoracic malignancies and the rapid development of specific cytotoxic drugs and molecular therapies requires a detailed identification of the different histologies, gene drivers or immune microenvironment biomarkers. Nevertheless, the heterogeneous clonal evolution, the emergency of drug-induced resistance and the limited occurrence of genetic alterations claim the need of a deep integration of the tumor's and the patient's biological features. The aim of the present study is to generate a tecnological platform for precision medicine in order to set predictive personalized algorithms for patient diagnosis and therapy.
View Article and Find Full Text PDFThe dynamic integrin-mediated adhesion of endothelial cells (ECs) to the surrounding ECM is fundamental for angiogenesis both in physiological and pathological conditions, such as embryonic development and cancer progression. The dynamics of EC-to-ECM adhesions relies on the regulation of the conformational activation and trafficking of integrins. Here, we reveal that oncogenic transcription factor EB (TFEB), a known regulator of lysosomal biogenesis and metabolism, also controls a transcriptional program that influences the turnover of ECM adhesions in ECs by regulating cholesterol metabolism.
View Article and Find Full Text PDFBackground: The combination of pemetrexed and cisplatin remains the reference first-line systemic therapy for malignant pleural mesothelioma (MPM). Its activity is moderate because of tumor aggressiveness, immune-suppressive environment and resistance to chemotherapy-induced immunogenic cell death (ICD). Preliminary and limited findings suggest that MPM cells have deregulated ubiquitination and proteasome activities, although proteasome inhibitors achieved disappointing clinical results.
View Article and Find Full Text PDFIn the last several years, accumulating evidence indicates that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play essential roles in regulating angiogenesis. However, the contribution of lncRNA-mediated competing-endogenous RNA (ceRNA) activity in the control of capillary sprouting from the pre-existing ones has not been described so far. Here, by exploiting the transcriptomic profile of VEGF-A-activated endothelial cells in a consolidate three-dimensional culture system, we identified a list of lncRNAs whose expression was modified during the sprouting process.
View Article and Find Full Text PDFOncostatin M (OSM) is a pleiotropic cytokine of the interleukin (IL)-6 family that contributes to the progression of chronic liver disease. Here we investigated the role of OSM in the development and progression of hepatocellular carcinoma (HCC) in non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH). The role of OSM was investigated in (1) selected cohorts of NAFLD/NASH HCC patients, (2) liver cancer cells exposed to human recombinant OSM or stably transfected to overexpress human OSM, (3) murine HCC xenografts, and (4) a murine NASH-related model of hepatic carcinogenesis.
View Article and Find Full Text PDFMany nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts.
View Article and Find Full Text PDFGlioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells.
View Article and Find Full Text PDF