Publications by authors named "Busslinger M"

Early B cell lymphopoiesis depends on E2A, Ebf1, Pax5 and Ikaros family members. In the present study, we used acute protein degradation in mice to identify direct target genes of these transcription factors in pro-B, small pre-B and immature B cells. E2A, Ebf1 and Pax5 predominantly function as transcriptional activators by inducing open chromatin at their target genes, have largely unique functions and are essential for early B cell maintenance.

View Article and Find Full Text PDF

Many microRNAs (miRNAs) are expressed with high spatiotemporal specificity during organismal development, with some being limited to rare cell types, often embedded in complex tissues. Yet, most miRNA profiling efforts remain at the tissue and organ levels. To overcome challenges in accessing the microRNomes from tissue-embedded cells, we had previously developed mime-seq (miRNome by methylation-dependent sequencing), a technique in which cell-specific miRNA methylation in C.

View Article and Find Full Text PDF

The B cell regulator Pax5 consists of multiple domains whose function we analyzed in vivo by deletion in Pax5. While B lymphopoiesis was minimally affected in mice with homozygous deletion of the octapeptide or partial homeodomain, both sequences were required for optimal B cell development. Deletion of the C-terminal regulatory domain 1 (CRD1) interfered with B cell development, while elimination of CRD2 modestly affected B-lymphopoiesis.

View Article and Find Full Text PDF

While extended loop extrusion across the entire Igh locus controls V -DJ recombination, local regulatory sequences, such as the PAIR elements, may also activate V gene recombination in pro-B-cells. Here, we show that PAIR-associated V 8 genes contain a conserved putative regulatory element (V8E) in their downstream sequences. To investigate the function of PAIR4 and its V8.

View Article and Find Full Text PDF

Extended loop extrusion across the immunoglobulin heavy-chain (Igh) locus facilitates V-DJ recombination following downregulation of the cohesin-release factor Wapl by Pax5, resulting in global changes in the chromosomal architecture of pro-B cells. Here, we demonstrate that chromatin looping and V-J recombination at the Igk locus were insensitive to Wapl upregulation in pre-B cells. Notably, the Wapl protein was expressed at a 2.

View Article and Find Full Text PDF

Antibody secretion by plasma cells provides acute and long-term protection against pathogens. The high secretion potential of plasma cells depends on the unfolded protein response, which is controlled by the transcription factor Xbp1. Here, we analyzed the Xbp1-dependent gene expression program of plasma cells and identified (Mist1) as the most strongly activated Xbp1 target gene.

View Article and Find Full Text PDF

Plasma cells (PCs) and their progenitors plasmablasts (PBs) are essential for the acute and long-term protection of the host against infections by providing vast levels of highly specific antibodies. Several transcription factors, like Blimp1 and Irf4, are already known to be essential for PC and PB differentiation and survival. We set out to identify additional genes, that are essential for PB development by CRISPR-Cas9 screening of 3,000 genes for the loss of PBs by employing the -inducible germinal center B cell (iGB) culture system and Rosa26 mice.

View Article and Find Full Text PDF
Article Synopsis
  • A patient with both hypogammaglobulinemia (low antibody levels) and autism spectrum disorder (ASD) was found to have biallelic mutations in the PAX5 gene, which is a vital transcription factor.
  • Research using a mouse model with these PAX5 mutations showed important developmental issues including blocked B cell development, immune response problems, and various ASD-related behavioral deficits.
  • The study also identified PAX5's critical role in brain development, particularly in the cerebellum and midbrain, linking genetic mutations to both immunological deficiencies and neurodevelopmental disorders.
View Article and Find Full Text PDF

While PAX5 is an important tumor suppressor gene in B-cell acute lymphoblastic leukemia (B-ALL), it is also involved in oncogenic translocations coding for diverse PAX5 fusion proteins. PAX5-JAK2 encodes a protein consisting of the PAX5 DNA-binding region fused to the constitutively active JAK2 kinase domain. Here, we studied the oncogenic function of the PAX5-JAK2 fusion protein in a mouse model expressing it from the endogenous Pax5 locus, resulting in inactivation of one of the two Pax5 alleles.

View Article and Find Full Text PDF

The generation of high-affinity antibodies against pathogens and vaccines requires the germinal center (GC) reaction, which relies on a complex interplay between specialized effector B and CD4 T lymphocytes, the GC B cells and T follicular helper (TFH) cells. Intriguingly, several positive key regulators of the GC reaction are common for both cell types. Here, we report that the transcription factor Bhlhe40 is a crucial cell-intrinsic negative regulator affecting both the B and T cell sides of the GC reaction.

View Article and Find Full Text PDF

Cell fate decisions during early B cell activation determine the outcome of responses to pathogens and vaccines. We examined the early B cell response to T-dependent antigen in mice by single-cell RNA sequencing. Early after immunization, a homogeneous population of activated precursors (APs) gave rise to a transient wave of plasmablasts (PBs), followed a day later by the emergence of germinal center B cells (GCBCs).

View Article and Find Full Text PDF

The transcription factor Pax5 controls B cell development, but its role in mature B cells is largely enigmatic. Here, we demonstrated that the loss of Pax5 by conditional mutagenesis in peripheral B lymphocytes led to the strong reduction of B-1a, marginal zone (MZ), and germinal center (GC) B cells as well as plasma cells. Follicular (FO) B cells tolerated the loss of Pax5 but had a shortened half-life.

View Article and Find Full Text PDF

Type 2 innate lymphoid cells (ILC2s) play a critical role early in the response to infection by helminths and in the development of allergic reactions. ILC2s are also involved in the physiologic regulation of adipose tissue and its metabolic response to cold shock. We find that the metabolic sensor peroxisome proliferator-activated receptor gamma (PPARγ) is highly expressed in ILC2s of the lung and adipose tissue and increases responsiveness to IL-33.

View Article and Find Full Text PDF
Article Synopsis
  • JAGN1 is an important regulator for neutrophil function and is linked to immune responses in both mutant mice and patients with JAGN1 mutations.
  • Deficiency of JAGN1 in B cells leads to changes in the endoplasmic reticulum, resulting in decreased antibody production and altered glycosylation of antibodies (specifically IgG), which affects immune response effectiveness.
  • The study highlights the crucial role of JAGN1 in antibody glycosylation and the overall humoral immunity, indicating that deficiencies can cause significant immune system challenges in both mice and humans.
View Article and Find Full Text PDF

B cell and plasma cell fates are controlled by different transcriptional networks, as exemplified by the mutually exclusive expression and cross-antagonism of the B cell identity factor Pax5 and the plasma cell regulator Blimp1. It has been postulated that repression of Pax5 by Blimp1 is essential for plasma cell development. Here, we challenged this hypothesis by analyzing the IghPax5/+ mouse, which expressed a Pax5 minigene from the immunoglobulin heavy-chain locus.

View Article and Find Full Text PDF

Nuclear processes, such as V(D)J recombination, are orchestrated by the three-dimensional organization of chromosomes at multiple levels, including compartments and topologically associated domains (TADs) consisting of chromatin loops. TADs are formed by chromatin-loop extrusion, which depends on the loop-extrusion function of the ring-shaped cohesin complex. Conversely, the cohesin-release factor Wapl restricts loop extension.

View Article and Find Full Text PDF
Article Synopsis
  • The B cell antigen receptor (BCR) repertoire is diverse due to V(D)J recombination, but this process also leads to the formation of autoreactive B cells, which can potentially cause autoimmunity.
  • Anergy helps keep these autoreactive B cells in check by making them unresponsive to self-antigens, but Toll-like receptor (TLR) signaling has the potential to reactivate them.
  • The transcription factor Ikaros plays a crucial role in regulating BCR anergy and controlling TLR signaling; without Ikaros, mice developed systemic autoimmunity due to hyperactive TLR signaling and failure to regulate anti-self responses.
View Article and Find Full Text PDF

Tissues in multicellular organisms are populated by resident macrophages, which perform both generic and tissue-specific functions. The latter are induced by signals from the microenvironment and rely on unique tissue-specific molecular programs requiring the combinatorial action of tissue-specific and broadly expressed transcriptional regulators. Here, we identify the transcription factors Bhlhe40 and Bhlhe41 as novel regulators of alveolar macrophages (AMs)-a population that provides the first line of immune defense and executes homeostatic functions in lung alveoli.

View Article and Find Full Text PDF

Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification.

View Article and Find Full Text PDF

The transcription factor Blimp1 is not only an essential regulator of plasma cells, but also a risk factor for the development of autoimmune disease in humans. Here, we demonstrate in the mouse that the (Blimp1) gene was partially activated at the chromatin and transcription level in early B cell development, although mature mRNA did not accumulate due to posttranscriptional regulation. By analyzing a mouse model that facilitated ectopic Blimp1 protein expression throughout B lymphopoiesis, we could demonstrate that Blimp1 impaired B cell development by interfering with the B cell gene expression program, while leading to an increased abundance of plasma cells by promoting premature plasmablast differentiation of immature and mature B cells.

View Article and Find Full Text PDF

Inhibitors of the Na-glucose cotransporter SGLT2 enhance urinary glucose and urate excretion and lower plasma urate levels. The mechanisms remain unclear, but a role for enhanced glucose in the tubular fluid, which may interact with tubular urate transporters, such as the glucose transporter GLUT9 or the urate transporter URAT1, has been proposed. Studies were performed in nondiabetic mice treated with the SGLT2 inhibitor canagliflozin and in gene-targeted mice lacking the urate transporter Glut9 in the tubule or in mice with whole body knockout of Sglt2, Sglt1, or Urat1.

View Article and Find Full Text PDF

Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology.

View Article and Find Full Text PDF

The rapid elimination of dying neurons and nonfunctional synapses in the brain is carried out by microglia, the resident myeloid cells of the brain. Here we show that microglia clearance activity in the adult brain is regionally regulated and depends on the rate of neuronal attrition. Cerebellar, but not striatal or cortical, microglia exhibited high levels of basal clearance activity, which correlated with an elevated degree of cerebellar neuronal attrition.

View Article and Find Full Text PDF