Publications by authors named "Busse F"

Nuclear magnetic resonance (NMR) spectroscopy is a valuable and complementary tool in environmental research, but it is underutilized due to the cost, size, and maintenance requirements of standard "high-field" NMR spectrometers. "Low-field" NMR spectrometers are a financially and physically accessible alternative, but their lower sensitivity and increased spectral overlap limit the analysis of heterogeneous environmental/biological media, especially with fast-relaxing samples that produce broad, low-intensity spectra. This study therefore investigates the potential of the steady-state free precession (SSFP) experiment to enhance signal-to-noise ratios (SNRs) of fast-relaxing, complex samples at both high- and low-field.

View Article and Find Full Text PDF

The excellent versatility of 5-axis computer numerical control (CNC) micromilling has led to its application for prototyping NMR microcoils tailored to mass-limited samples (reducing development time and cost). However, vibrations during 5-axis milling can hinder the creation of complex 3D volume microcoils (i.e.

View Article and Find Full Text PDF

Benchtop NMR provides improved accessibility in terms of cost, space, and technical expertise. In turn, this encourages new users into the field of NMR spectroscopy. Unfortunately, many interesting samples in education and research, from beer to whole blood, contain significant amounts of water that require suppression in H NMR in order to recover sample information.

View Article and Find Full Text PDF

In recent years there has been a renewed interest in benchtop NMR. Given their lower cost of ownership, smaller footprint, and ease of use, they are especially suited as an educational tool. Here, a new experiment targeted at upper-year undergraduates and first-year graduate students follows the conversion of D-glucose into ethanol at low-field.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding environmental change requires sophisticated tools like NMR spectroscopy, which typically isn't accessible due to cost and complexity, especially "high-field" NMR.
  • This study focuses on improving "low-field" NMR techniques to analyze complex environmental samples, addressing challenges like reduced sensitivity and spectral overlap.
  • Innovative low-field NMR experiments, including selective detection methods and a new experiment called Doubly Selective HSQC, show promise for enhancing analysis in biological and environmental research.
View Article and Find Full Text PDF

The boundary layer near a cooled inclined plate, which is immersed in a stably stratified fluid rotating about an axis parallel to the direction of gravity, is a model for katabatic flows at high latitudes. In this paper the base flow of such an inclined buoyancy layer is solved analytically for arbitrary Prandtl numbers. By applying linear stability analyses, five unstable modes are identified for both the fixed temperature and the isoflux boundary conditions, i.

View Article and Find Full Text PDF

In environmental research, it is critical to understand how toxins impact invertebrate eggs and egg banks, which, due to their tiny size, are very challenging to study by conventional nuclear magnetic resonance (NMR) spectroscopy. Microcoil technology has been extensively utilized to enhance the mass-sensitivity of NMR. In a previous study, 5-axis computer numerical control (CNC) micromilling (shown to be a viable alternative to traditional microcoil production methods) was used to create a prototype copper slotted-tube resonator (STR).

View Article and Find Full Text PDF

Strong and weak halogen bonds (XBs) in discrete aggregates involving the same acceptor are addressed by experiments in solution and in the solid state. Unsubstituted and perfluorinated iodobenzenes act as halogen donors of tunable strength; in all cases, quinuclidine represents the acceptor. NMR titrations reliably identify the strong intermolecular interactions in solution, with experimental binding energies of approx.

View Article and Find Full Text PDF

Smart interfaces that are responsive to external triggers such as light are of great interest for the development of responsive or adaptive materials and interfaces. Using alkyl-arylazopyrazole butyl sulfonate surfactants (alkyl-AAP) that can undergo / photoisomerization when irradiated with green () and UV () lights, we demonstrate through a combination of experiments and computer simulations that there can be surprisingly large changes in surface tension and in the molecular structure and order at air-water interfaces. Surface tensiometry, vibrational sum-frequency generation (SFG) spectroscopy, and neutron reflectometry (NR) are applied to the study of custom-synthesized AAP surfactants with octyl- and H-terminal groups at air-water interfaces as a function of their bulk concentration and / configuration.

View Article and Find Full Text PDF

Chemical characterization of complex mixtures by Nuclear Magnetic Resonance (NMR) spectroscopy is challenging due to a high degree of spectral overlap and inherently low sensitivity. Therefore, NMR experiments that reduce overlap and increase signal intensity hold immense potential for the analysis of mixtures such as biological and environmental media. Here, we introduce a C version of DREAMTIME (Designed Refocused Excitation And Mixing for Targets In Vivo and Mixture Elucidation) NMR, which, when analyzing C-enriched materials, allows the user to selectively detect only the compound(s) of interest and remove all other peaks in a C spectrum.

View Article and Find Full Text PDF

Toxicity testing is currently undergoing a paradigm shift from examining apical end points such as death, to monitoring sub-lethal toxicity in vivo. In vivo nuclear magnetic resonance (NMR) spectroscopy is a key platform in this endeavor. A proof-of-principle study is presented which directly interfaces NMR with digital microfluidics (DMF).

View Article and Find Full Text PDF

We present a cryogenic mass spectrometry protocol with the capability to detect peptides in the attomole dilution range from ice films. Our approach employs femtosecond laser pulses and implements neither substrate modification nor proton donor agents in the aqueous solution, known to facilitate analyte detection in mass spectrometry. In a systematic study, we investigated the impact of temperature, substrate composition, and irradiation wavelength (513 and 1026 nm) on the bradykinin signal onset.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) are a contaminant of emerging interest, often used in the medical field as an imaging contrast agent, with additional uses in wastewater treatment and as food additives. Although the use of SPIONs is increasing, little research has been conducted on the toxic impacts to living organisms beyond traditional lethal concentration endpoints. Daphnia magna are model organisms for aquatic toxicity testing with a well understood metabolome and high sensitivity to SPIONs.

View Article and Find Full Text PDF

Comprehensive multiphase-nuclear magnetic resonance (CMP-NMR) is a non-invasive approach designed to observe all phases (solutions, gels, and solids) in intact samples using a single NMR probe. Studies of dead and living organisms are important to understand processes ranging from biological growth to environmental stress. Historically, such studies have utilized H-based phase editing for the detection of soluble/swollen components and H-detected 2D NMR for metabolite assignments/screening.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy has played an integral role in medical and environmental metabolic research. However, smaller biological entities, such as eggs and small tissue samples, are becoming increasingly important to better understand toxicity, biological growth/development, and diseases. Unfortunately, their small sizes make them difficult to study using conventional 5 mm NMR probes due to limited sensitivity.

View Article and Find Full Text PDF

Microcoils provide a cost-effective approach to improve detection limits for mass-limited samples. Single-sided planar microcoils are advantageous in comparison to volume coils, in that the sample can simply be placed on top. However, the considerable drawback is that the RF field that is produced by the coil decreases with distance from the coil surface, which potentially limits more complex multi-pulse NMR pulse sequences.

View Article and Find Full Text PDF

Comprehensive multiphase (CMP) NMR, first described in 2012, combines all of the hardware components necessary to analyze all phases (solid, gel, and solution) in samples in their natural state. In combination with spectral editing experiments, it can fully differentiate phases and study the transfer of chemical species across and between phases, providing unprecedented molecular-level information in unaltered natural systems. However, many natural samples, such as swollen soils, plants, and small organisms, contain water, salts, and ionic compounds, making them electrically lossy and susceptible to RF heating, especially when using high-strength RF fields required to select the solid domains.

View Article and Find Full Text PDF

Comprehensive multiphase NMR combines the ability to study and differentiate all phases (solids, gels, and liquids) using a single NMR probe. The general goal of CMP-NMR is to study intact environmental and biological samples to better understand conformation, organization, association, and transfer between and across phases/interfaces that may be lost with conventional sample preparation such as drying or solubilization. To date, all CMP-NMR studies have used 4 mm probes and rotors.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance (NMR) spectroscopy is a non-invasive analytical technique which allows for the study of intact samples. Comprehensive Multiphase NMR (CMP-NMR) combines techniques and hardware from solution state and solid state NMR to allow for the holistic analysis of all phases (i.e.

View Article and Find Full Text PDF

The superior mass sensitivity of microcoil technology in nuclear magnetic resonance (NMR) spectroscopy provides potential for the analysis of extremely small-mass-limited samples such as eggs, cells, and tiny organisms. For optimal performance and efficiency, the size of the microcoil should be tailored to the size of the mass-limited sample of interest, which can be costly as mass-limited samples come in many shapes and sizes. Therefore, rapid and economic microcoil production methods are needed.

View Article and Find Full Text PDF

Mobile nuclear magnetic resonance (NMR) is a flexible technique for nondestructive characterization of water in plants, the physical properties of polymers, moisture in porous walls, or the binder in paintings by relaxation measurements. NMR relaxation data report material properties and therefore can also help to characterize the state of tangible cultural heritage. In this work, we discuss the relaxation behavior in two series of naturally aged paint mock-up samples.

View Article and Find Full Text PDF

Microcoil nuclear magnetic resonance (NMR) has been interfaced with digital microfluidics (DMF) and is applied to monitor organic reactions in organic solvents as a proof of concept. DMF permits droplets to be moved and mixed inside the NMR spectrometer to initiate reactions while using sub-microliter volumes of reagent, opening up the potential to follow the reactions of scarce or expensive reagents. By setting up the spectrometer shims on a reagent droplet, data acquisition can be started immediately upon droplet mixing and is only limited by the rate at which NMR data can be collected, allowing the monitoring of fast reactions.

View Article and Find Full Text PDF

In recent years microcoils and related structures have been developed to increase the mass sensitivity of nuclear magnetic resonance spectroscopy, allowing this extremely powerful analytical technique to be extended to small sample volumes (<5 μl). In general, microchannels have been used to deliver the samples of interest to these microcoils; however, these systems tend to have large dead volumes and require more complex fluidic connections. Here, we introduce a two-plate digital microfluidic (DMF) strategy to interface small-volume samples with NMR microcoils.

View Article and Find Full Text PDF

Synchytrium endobioticum is an obligate biotrophic fungus that causes wart diseases in potato. Like other species of the class Chytridiomycetes, it does not form mycelia and its zoospores are small, approximately 3 μm in diameter, which complicates the detection of early stages of infection. Furthermore, potato wart disease is difficult to control because belowground organs are infected and resting spores of the fungus are extremely durable.

View Article and Find Full Text PDF

Spatially resolved measurements of the magnetization dynamics on a thin CoFeB film induced by an intense laser pump-pulse reveal that the frequencies of resulting spin-wave modes depend strongly on the distance to the pump center. This can be attributed to a laser generated temperature profile. We determine a shift of 0.

View Article and Find Full Text PDF