Process-induced inadvertent phase change of an active pharmaceutical ingredient in a drug product could impact chemical stability, physical stability, shelf life, and bioperformance. In this study, dispersive Raman spectroscopy is presented as an alternative method for the nondestructive, high-throughput, at-line quantification of amorphous conversion. A quantitative Raman method was developed using a multivariate partial least squares (PLS) regression calibration technique with solid-state nuclear magnetic resonance (ssNMR) spectroscopy as the reference method.
View Article and Find Full Text PDFThis paper examines how one may assess spectral changes with instrument configuration (or composition), in combination with the spectral changes in the measurement that are caused by experimental effects, and subsequently select an appropriate measurement modality for tablet content uniformity determination with near-infrared (NIR) spectroscopy. Two NIR spectrometers furnished with three configurations in the sample measurement interface were evaluated. One spectrometer, Bruker MPA (multiple purpose analyzer), was equipped with two measurement modalities, diffuse transmission (DT) and diffuse reflection based on integrating sphere optics (DR/IS).
View Article and Find Full Text PDFNear-infrared calibration models were developed for the determination of content uniformity of pharmaceutical tablets containing 29.4% drug load for two dosage strengths (X and Y). Both dosage strengths have a circular geometry and the only difference is the size and weight.
View Article and Find Full Text PDF