Galanthamine is an immensely valuable alkaloid exhibiting anti-cancer and antiviral activity. The cultivation of plant tissues in in vitro conditions is a good source for the synthesis and enrichment of secondary metabolites of commercial interest. In this study, the Amaryllidaceae alkaloid galanthamine was quantified in three species, such as , , and , and the impact of the methyl jasmonate (MJ) signaling molecule on galanthamine accumulation was monitored in in vitro-derived plant tissues.
View Article and Find Full Text PDFIn this study, a Gas chromatography-mass spectrometry (GC-MS) investigation of embryogenic callus and somatic embryo regenerated shoots of revealed the presence of a variety of sugars, sugar acids, sugar alcohols, fatty acids, organic acids, and amino acids of broad therapeutic value. The in vitro developed inflorescence contained a wide range of active compounds. In embryogenic calluses, important flavonoids like naringenin, myricetin, kaempferol, epicatechin gallate, rutin, pelargonidin, peonidin, and delphinidin were identified.
View Article and Find Full Text PDFL. is a therapeutically important plant that synthesizes important cardiotonics such as digitoxin and digoxin. The present work reports a detailed and efficient propagation protocol for by optimizing various PGR concentrations in Murashige and Skoog (MS) medium.
View Article and Find Full Text PDFVincristine is an anti-cancer compound and one of the most crucial vinca alkaloids produced by the medicinal plant (L.) G. Don.
View Article and Find Full Text PDFPluchea lanceolata is a threatened pharmacologically important plant from the family Asteraceae. It is a source of immunologically active compounds; large-scale propagation may offer compounds with medicinal benefits. Traditional propagation method is ineffective as the seeds are not viable; and root sprout propagation is a slow process and produces less numbers of plants.
View Article and Find Full Text PDFSomatic or in vitro embryogenesis is a unique embryo producing process from vegetative cells observed in plants since 1958. Even over 60 years of research, the transition of somatic cells into embryonic fate is still not elucidated fully. Various networks and signaling elements have been noted to play important role in this "vegetative to reproductive" transition process.
View Article and Find Full Text PDFPlant Cell Tissue Organ Cult
February 2022
Unlabelled: (Burm.f.) Merrill.
View Article and Find Full Text PDFHeavy metal (HM) toxicity has become a global concern in recent years and is imposing a severe threat to the environment and human health. In the case of plants, a higher concentration of HMs, above a threshold, adversely affects cellular metabolism because of the generation of reactive oxygen species (ROS) which target the key biological molecules. Moreover, some of the HMs such as mercury and arsenic, among others, can directly alter the protein/enzyme activities by targeting their -SH group to further impede the cellular metabolism.
View Article and Find Full Text PDFCaladium × hortulanum 'Fancy' is an important ornamental plant grown in pots and landscapes and known for its colorful leaves often used for interior decorations. In this work, we present a method of in vitro regeneration from three explants source through direct somatic embryogenesis (DSE) wherein the regenerated plants were screened for ploidy changes through flow cytometry analysis. Tuber, leaf and petiole explants were cultured on MS basal medium supplemented with 1-napthalene acetic acid (NAA), 6-benzyl amino purine (BAP) and N-phenyl-N'-1, 2,3-thiadiazol-5-ylurea (TDZ) concentrations.
View Article and Find Full Text PDFSomatic embryogenesis is an important and wonderful biotechnological tool used to develop whole plant from a single or a group of somatic cells. The differentiated somatic cells become totipotent stem cells by drastic reprogramming of a wide range of cellular activities, leading to the acquisition of embryogenic competence. After acquiring competence, the cells pass through globular, heart, torpedo and cotyledonary stages of embryo; however, all advanced embryos do not convert into full plant, produce adventive embryos or callus instead, thus reverses the programming.
View Article and Find Full Text PDFGenus Zephyranthes consists of economically important plant species due to their high ornamental value and presence of valuable bioactive compounds. However, this genus propagates by asexual division only which gives slow propagation rate. Plant tissue culture has the potential to provide efficient techniques for rapid multiplication and genetic improvement of the genus.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
July 2020
Background: Somatic embryogenesis (SE) is an intricate molecular and biochemical process principally based on cellular totipotency and a model in studying plant development. In this unique embryo-forming process, the vegetative cells acquire embryogenic competence under cellular stress conditions. The stress caused by plant growth regulators (PGRs), nutrient, oxygenic, or other signaling elements makes cellular reprogramming and transforms vegetative cells into embryos through activation/deactivation of a myriad of genes and transcriptional networks.
View Article and Find Full Text PDFIn the present study, an efficient in vitro propagation protocol has been developed from clove explants of Allium sativum L., one of the oldest vegetable and medicinal plant used worldwide. Garlic is propagated vegetatively as cross-fertilization is strictly precluded due to sterile flowers.
View Article and Find Full Text PDF