Publications by authors named "Burzlaff A"

Zinc sulphide is a widely used inorganic powder, and its production has reached quantities greater than 1000 t/year. Therefore, in accordance with OECD guideline 436, an acute inhalation test was implemented to provide more accurate data. This study is crucial for ensuring the safety of workers exposed to zinc sulphide dust and complying with regulatory requirements for REACH.

View Article and Find Full Text PDF

In 2021 the European Food Safety Authority (EFSA) concluded that "A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out.". A detailed review of the genotoxicity of titanium dioxide (TiO) was subsequently published by Kirkland et al.

View Article and Find Full Text PDF

Titanium dioxide is a ubiquitous white material found in a diverse range of products from foods to sunscreens, as a pigment and thickener, amongst other uses. Titanium dioxide has been considered no longer safe for use in foods (nano and microparticles of E171) by the European Food Safety Authority (EFSA) due to concerns over genotoxicity. There are however, conflicting opinions regarding the safety of Titanium dioxide.

View Article and Find Full Text PDF

A mode of action (MOA) for cobalt substances based on the "International Programme on Chemical Safety Conceptual Framework for Evaluating a MOA for Chemical Carcinogenesis" is presented. The data recorded therein were generated in a tiered testing program described in the preceding papers of this special issue, as well as data from the public domain. The following parameters were included in the evaluation: solubility of cobalt substances in artificial lung fluids (bioelution), in vitro biomarkers for cytotoxicity, reactive oxygen species and hypoxia mimicry, inhalation toxicity following acute exposure and repeated dose inhalation effects.

View Article and Find Full Text PDF

Lung cancer following inhalation in rodents is a major concern regarding exposure to cobalt substances. However, little information is available on adverse effects and toxicity following long-term inhalation exposure to poorly soluble cobalt substances with low bioavailability. Thus, the present study focused on pulmonary effects of the poorly soluble tricobalt tetraoxide (5, 20, 80 mg/m³) in a 28-day inhalation exposure study.

View Article and Find Full Text PDF

In vitro studies have shown that cobalt substances predominantly induce pre-inflammatory biomarkers, resulting in a grouping of substances either predicted to cause inflammation following inhalation, or those with a different reactivity profile (poorly-reactive). There is a lack of data on whole-organ lung responses following inhalation of these substances, especially relating to the poorly-reactive group. It is of interest to generate tissue-specific histopathological correlation to better ascertain the predictive nature of the lower tier tests (i.

View Article and Find Full Text PDF

Based on the wide use of cobalt substances in a range of important technologies, it has become important to predict the toxicological properties of new or lesser-studied substances as accurately as possible. We studied a group of 6 cobalt substances with inorganic ligands, which were tested for their bioaccessibility (surrogate measure of bioavailability) through in vitro bioelution in simulated gastric and intestinal fluids. Representatives of the group also underwent in vivo blood kinetics and mass balance tests, and both oral acute and repeated dose toxicity (RDT) testing.

View Article and Find Full Text PDF

The potential of molybdenum substances to cause genotoxic effects has been studied previously. However, a review of existing in vitro data, including an assessment of relevance and reliability, has shown that inconsistent results have been observed in the past. To resolve the inconsistencies, new studies were performed with the highly soluble sodium molybdate dihydrate according to OECD test guidelines.

View Article and Find Full Text PDF

Background: A new method was established to characterize the binding kinetics of DNA toward layered double hydroxides (LDHs). The setup consisted of a newly developed sampling tube that allows the injection of analyte during the flow cytometric measurement.

Methods: Layered double hydroxides consist of cationic metal hydroxide layers and exchangeable interlayer anions.

View Article and Find Full Text PDF

Ratjadone, isolated from the myxobacterium Sorangium cellulosum, belongs to the family of so-called orphan ligands, which includes leptomycin, callystatin and other compounds. In previous screening tests, ratjadone revealed a growth inhibitory effect against bacteria, yeast and human cancer cells. Following these first results, ratjadone was tested on several human tumour cell lines (Jurkat, HepG2, U87-MG) and, as a control, on a non-tumour cell line (RLC18) for its mode of action.

View Article and Find Full Text PDF

Callystatin A is a prominent member of a class of natural products which display promising growth inhibition of cancer cells in their biological profile. The challenging structure and the interesting biological activity of (-)-callystatin A fueled our interest in the synthesis of this marine natural product. We achieved the total synthesis using a highly convergent approach joining four subunits together with a Wittig olefination, a selective Heck reaction and an aldol reaction as the pivotal steps.

View Article and Find Full Text PDF

We here describe the structural requirements for Golgi localization and a sequential, localization-dependent activation process of protein kinase C (PKC) mu involving auto- and transphosphorylation. The structural basis for Golgi compartment localization was analyzed by confocal microscopy of HeLa cells expressing various PKC mu-green fluorescent protein fusion proteins costained with the Golgi compartment-specific markers p24 and p230. Deletions of either the NH(2)-terminal hydrophobic or the cysteine region, but not of the pleckstrin homology or the acidic domain, of PKC mu completely abrogated Golgi localization of PKC mu.

View Article and Find Full Text PDF

We have investigated the interchromosomal domain compartment in living cells by transfecting cDNA coding for Xenopus vimentin, engineered to contain a nuclear localization signal (NLS), coupled to the green fluorescent protein. In human vimentin-free SW13 cells, this chimeric protein was deposited in body-like "dots" both at 37 degrees C, the nonpermissive temperature for assembly of the amphibian vimentin, and 28 degrees C, the optimal temperature for Xenopus vimentin assembly, indicating that the chimeric protein was assembly incompetent. However, when transfected into a subclone stably expressing Xenopus NLS-vimentin (SW13-SC), the chimeric protein incorporated, as a fluorescent tracer, into the structures formed by NLS-vimentin and allowed us to visualize the outgrowth of the vimentin fibers after a temperature shift to 28 degrees C in living cells.

View Article and Find Full Text PDF

High risk types of human papillomavirus (HPV) are agents in the aetiology of cervical carcinoma. The products of two early genes, E6 and E7, appear to be the principal transforming proteins. Studies of various monolayer cell culture systems have shown that the E7 oncoprotein of human papillomavirus type 16 is able to neutralize or bypass the inhibitory effect of the cell cycle-dependent kinase (CDK) inhibitors (CKIs) p21WAF1/CIP1 and p27KIP1.

View Article and Find Full Text PDF