Vascular stabilization is a mechanosensitive process, in part driven by blood flow. Here, we demonstrate the involvement of the mechanosensitive ion channel, Piezo1, in promoting arterial accumulation of vascular smooth muscle cells (vSMCs) during zebrafish development. Using a series of small molecule antagonists or agonists to temporally regulate Piezo1 activity, we identified a role for the Piezo1 channel in regulating klf2a, a blood flow responsive transcription factor, expression levels and altered targeting of vSMCs between arteries and veins.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2024
Background: Endothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces; yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor CXCR3 (CXC motif chemokine receptor 3) and one of its ligands, CXCL11 (CXC motif chemokine ligand 11)-that delimits EC angiogenic potential and promotes pericyte recruitment to ECs during development.
Methods: We investigated the role of CXCR3 on vascular development using both 2- and 3-dimensional in vitro assays, to study EC-pericyte interactions and EC behavioral responses to blood flow.
Vascular stabilization is a mechanosensitive process, in part driven by blood flow. Here, we demonstrate the involvement of the mechanosensitive ion channel, Piezo1, in promoting arterial accumulation of vascular smooth muscle cells (vSMCs) during zebrafish development. Using a series of small molecule antagonists or agonists to temporally regulate Piezo1 activity, we identified a role for the Piezo1 channel in regulating levels and altered targeting of vSMCs between arteries and veins.
View Article and Find Full Text PDFAcid mine drainage (AMD) and municipal wastewater (MWW) are commonly co-occurring waste streams in mining regions. Co-treating AMD at existing wastewater facilities represents an innovative solution for simultaneous AMD reclamation and improved MWW treatment. However, unknowns related to biological processes and continuous treatment performance block full-scale use.
View Article and Find Full Text PDFLife (Basel)
November 2023
There are no theorems (proven theories) in the biological sciences. We propose that the 3 31 nt minihelix tRNA evolution theorem be universally accepted as one. The 3 31 nt minihelix theorem completely describes the evolution of type I and type II tRNAs from ordered precursors (RNA repeats and inverted repeats).
View Article and Find Full Text PDFEndothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces, yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor, CXCR3, and one of its ligands, CXCL11-that delimits EC angiogenic potential and suppresses pericyte recruitment during development through regulation of expression in ECs. modeling of EC-pericyte interactions demonstrates that suppression of EC-specific CXCR3 signaling leads to loss of pericyte association with EC tubes.
View Article and Find Full Text PDFMicrobiol Resour Announc
March 2023
strain HKRS030 was isolated from a cryptoendolithic community found in the Grand Staircase-Escalante National Monument (GSENM) in southern Utah, USA. strain HKRS030 was observed to dissimilatorily reduce iron(III) while being unable to reduce nitrate.
View Article and Find Full Text PDFThe early Eocene (~ 56-48 million years ago) was marked by peak Cenozoic warmth and sea levels, high CO, and largely ice-free conditions. This time has been described as a period of increased continental erosion and silicate weathering. However, these conclusions are based largely on geochemical investigation of marine mudstones and carbonates or study of intermontane Laramide basin settings.
View Article and Find Full Text PDFThe genetic code evolved around the reading of the tRNA anticodon on the primitive ribosome, and tRNA-34 wobble and tRNA-37 modifications coevolved with the code. We posit that EF-Tu, the closing mechanism of the 30S ribosomal subunit, methylation of wobble U34 at the 5-carbon and suppression of wobbling at the tRNA-36 position were partly redundant and overlapping functions that coevolved to establish the code. The genetic code devolved in evolution of mitochondria to reduce the size of the tRNAome (all of the tRNAs of an organism or organelle).
View Article and Find Full Text PDFBackground: Childhood obesity has become a serious global healthcare challenge. No UK data currently define its anaesthetic and perioperative implications. We aimed to determine obesity prevalence amongst UK children undergoing general anaesthesia and the incidence of predefined adverse perioperative events, and to compare perioperative obesity rates with National Child Measurement Programme (NCMP) data.
View Article and Find Full Text PDFFront Mol Biosci
May 2021
DNA template-dependent multi-subunit RNA polymerases (RNAPs) found in all three domains of life and some viruses are of the two-double-Ψ-β-barrel (DPBB) type. The 2-DPBB protein format is also found in some RNA template-dependent RNAPs and a major replicative DNA template-dependent DNA polymerase (DNAP) from Archaea (PolD). The 2-DPBB family of RNAPs and DNAPs probably evolved prior to the last universal common cellular ancestor (LUCA).
View Article and Find Full Text PDFDiverse models have been advanced for the evolution of the genetic code. Here, models for tRNA, aminoacyl-tRNA synthetase (aaRS) and genetic code evolution were combined with an understanding of EF-Tu suppression of tRNA 3 anticodon position wobbling. The result is a highly detailed scheme that describes the placements of all amino acids in the standard genetic code.
View Article and Find Full Text PDFOn Mars, seasonal martian flow features known as recurring slope lineae (RSL) are prevalent on sun-facing slopes and are associated with salts. On Earth, subsurface interactions of gypsum with chlorides and oxychlorine salts wreak havoc: instigating sinkholes, cave collapse, debris flows, and upheave. Here, we illustrate (i) the disruptive potential of sulfate-chloride reactions in laboratory soil crust experiments, (ii) the formation of thin films of mixed ice-liquid water "slush" at -40° to -20°C on salty Mars analog grains, (iii) how mixtures of sulfates and chlorine salts affect their solubilities in low-temperature environments, and (iv) how these salt brines could be contributing to RSL formation on Mars.
View Article and Find Full Text PDFLife on Earth and the genetic code evolved around tRNA and the tRNA anticodon. We posit that the genetic code initially evolved to synthesize polyglycine as a cross-linking agent to stabilize protocells. We posit that the initial amino acids to enter the code occupied larger sectors of the code that were then invaded by incoming amino acids.
View Article and Find Full Text PDFTransfer RNA (tRNA) is the central intellectual property in the evolution of life on Earth. tRNA evolved from repeats and inverted repeats of known sequence. The anticodon and the T stem-loop-stems are homologs with significant conserved sequence identity.
View Article and Find Full Text PDFPathways of standard genetic code evolution remain conserved and apparent, particularly upon analysis of aminoacyl-tRNA synthetase (aaRS) lineages. Despite having incompatible active site folds, class I and class II aaRS are homologs by sequence. Specifically, structural class IA aaRS enzymes derive from class IIA aaRS enzymes by in-frame extension of the protein N-terminus and by an alternate fold nucleated by the N-terminal extension.
View Article and Find Full Text PDFRibosomes are among the largest and most dynamic molecular motors. The structure and dynamics of translation initiation and elongation are reviewed. Three ribosome motions have been identified for initiation and translocation.
View Article and Find Full Text PDFBecause tRNA is the core biological intellectual property that was necessary to evolve translation systems, tRNAomes, ribosomes, aminoacyl-tRNA synthetases, and the genetic code, the evolution of tRNA is the core story in evolution of life on earth. We have previously described the evolution of type-I tRNAs. Here, we use the same model to describe the evolution of type-II tRNAs, with expanded V loops.
View Article and Find Full Text PDFThe genetic code sectored via tRNA charging errors, and the code progressed toward closure and universality because of evolution of aminoacyl-tRNA synthetase (aaRS) fidelity and translational fidelity mechanisms. Class I and class II aaRS folds are identified as homologs. From sequence alignments, a structurally conserved Zn-binding domain common to class I and class II aaRS was identified.
View Article and Find Full Text PDFHomology threading is a powerful technology for generating structural models based on homologous structures. Here we use threading to generate four complex RNA polymerase models. The models appear to be as useful as x-ray crystal structures or cryo-electron microscopy structures to support research projects.
View Article and Find Full Text PDF