Osteopontin (OPN) and Bone Sialoprotein (BSP), abundantly expressed by osteoblasts and osteoclasts, appear to have important, partly overlapping functions in bone. In gene-knockout (KO, -/-) models of either protein and their double (D)KO in the same CD1/129 genetic background, we analyzed the morphology, matrix characteristics, and biomechanical properties of femur bone in 2 and 4 month old, male and female mice. OPN mice display inconsistent, perhaps localized hypermineralization, while the BSP are hypomineralized throughout ages and sexes, and the low mineralization of young DKO mice recovers with age.
View Article and Find Full Text PDFAfter internal contamination, uranium rapidly distributes in the body; up to 20 % of the initial dose is retained in the skeleton, where it remains for years. Several studies suggest that uranium has a deleterious effect on the bone cell system, but little is known regarding the mechanisms leading to accumulation of uranium in bone tissue. We have performed synchrotron radiation-based micro-X-ray fluorescence (SR μ-XRF) studies to assess the initial distribution of uranium within cortical and trabecular bones in contaminated rats' femurs at the micrometer scale.
View Article and Find Full Text PDFIn humans, the middle ear contains a chain of three ossicles with a major highly specific mechanical property (transmission of vibrations) and modeling that stops rapidly after birth. Their bone quality has been rarely studied either in noninflammatory ossicles or in those from ears with chronic inflammation. Our primary goal was to assess bone microarchitecture, morphology and variables reflecting bone quality from incuses, in comparison with those from human femoral cortical bone as controls.
View Article and Find Full Text PDFPrevious studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54-95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated.
View Article and Find Full Text PDFThe purpose of this study was to adapt various staining methods for the detection of microdamage in human bone, while preserving tetracycline labels. We describe two staining methods using calcein green and xylenol orange, first developed in ewe bone samples and validated in human trabecular bone samples. In ewe bones, we found that calcein green at 0.
View Article and Find Full Text PDFPrevious studies have shown that the mechanical properties of trabecular bone are determined by bone volume fraction (BV/TV) and microarchitecture. The purpose of this study was to explore other possible determinants of the mechanical properties of vertebral trabecular bone, namely collagen cross-link content, microdamage, and mineralization. Trabecular bone cores were collected from human L2 vertebrae (n = 49) from recently deceased donors 54-95 years of age (21 men and 27 women).
View Article and Find Full Text PDFIt has been suggested that accumulation of microdamage with age contributes to skeletal fragility. However, data on the age-related increase in microdamage and the association between microdamage and trabecular microarchitecture in human vertebral cancellous bone are limited. We quantified microdamage in cancellous bone from human lumbar (L(2)) vertebral bodies obtained from 23 donors 54-93 yr of age (8 men and 15 women).
View Article and Find Full Text PDFBone sialoprotein (BSP) and osteopontin (OPN) are both highly expressed in bone, but their functional specificities are unknown. OPN knockout (-/-) mice do not lose bone in a model of hindlimb disuse (tail suspension), showing the importance of OPN in bone remodeling. We report that BSP(-/-) mice are viable and breed normally, but their weight and size are lower than wild-type (WT) mice.
View Article and Find Full Text PDFUnlabelled: Strontium ranelate is a new anti-osteoporotic treatment. On bone biopsies collected from humans receiving long-term treatment over 5 yr, it has been shown that strontium ranelate has good bone safety and better results than placebo on 3D microarchitecture. Hence, these effects may explain the decreased fracture rate.
View Article and Find Full Text PDFUnlabelled: We sought whether microdamage could rise in postmenopausal osteoporotic women on long-term bisphosphonates, as suggested by recent animal studies. We found few microcracks in iliac bone biopsies, despite a marked reduction in bone turnover.
Introduction: Animal studies suggest that bisphosphonates (BPs) could increase microdamage frequency in a dose-dependent manner, caused by excessively suppressed bone turnover.
Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis.
View Article and Find Full Text PDFBone tissue is densely innervated, and there is increasing evidence for a neural control of bone metabolism. Semaphorin-3A is a very important regulator of neuronal targeting in the peripheral nervous system as well as in angiogenesis, and knockout of the Semaphorin-3A gene induces abnormal bone and cartilage development. We analyzed the spatial and temporal expression patterns of Semaphorin-3A signaling molecules during endochondral ossification, in parallel with the establishment of innervation.
View Article and Find Full Text PDFThe aim of this study was to determine the contribution of 2D and 3D microarchitectural characteristics in the assessment of the mechanical strength of os calcis cancellous bone. A sample of cancellous bone was removed in a medio-lateral direction from the posterior body of calcaneus, taken at autopsy in 17 subjects aged 61-91 years. The sample was first used for the assessment of morphological parameters from 2D morphometry and 3D synchrotron microtomography (microCT) (spatial resolution=10 microm).
View Article and Find Full Text PDFRecent studies have demonstrated that bone is highly innervated and contains neuromediators that have functional receptors on bone cells. However, no data exist concerning the quantitative changes of innervation during bone loss associated with estrogen withdrawal. To study the involvement of nerve fibers in the regulation of bone remodeling, we have evaluated the modifications of innervation in a classical in vivo model of osteopenia in rats, ovariectomy (OVX).
View Article and Find Full Text PDFJ Cell Biochem
September 2001
The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor has recently been identified in bone, but the molecular composition of this receptor expressed by bone cells is unknown. NMDA receptor (NMDAR) is a hetero-oligomeric protein composed of two classes of subunits, the essential subunit NR1 and NR2A to D subunits that do not by themselves produce functional channels but potentiate NR1 activity and confer functional variability to the receptor. These subunits coassemble in different combinations to form functionally distinct NMDAR.
View Article and Find Full Text PDFThe aim of the present study on human vertebral cancellous bone was to validate structural parameters measured with high-resolution (150 microm) computed tomography (HRCT) by referring to histomorphometry and to try to predict mechanical properties of bone using HRCT. Two adjacent vertical cores were removed from the central part of human L2 vertebral body taken after necropsy in 22 subjects aged 47-95 years (10 women, 12 men; mean age 79 +/- 14 years). The right core was used for structural analysis performed by both HRCT and histomorphometry.
View Article and Find Full Text PDFThe excitatory amino acid glutamate (Glu) is a potent neurotransmitter in the central nervous system and exerts its action via a variety of glutamate receptors (GluRs). Because we had previously shown that a poly-glutamate (poly-Glu) peptide stimulates bone resorption in vitro, an effect specific to Glu (Raynal, C., Delmas, P.
View Article and Find Full Text PDFBiochim Biophys Acta
June 1996
Mitochondrial creatine kinase (mtCK) activity has been measured in the mitochondria isolated from the muscle of 69 patients suspected of mitochondrial diseases. The isolated mitochondria did not contain significant amounts of the muscle isoform of creatine kinase, as checked by an immunoassay performed after electrophoretic separation of the various isoforms. Hence, the enzyme assay reliably represented the mtCK activity.
View Article and Find Full Text PDFThe distribution of transcripts of mitochondrial and nuclear genes involved in oxidative phosphorylation and of the mitochondrial creatine kinase nuclear gene was examined, using in situ hybridisation, in the skeletal muscle of 11 patients harbouring a heteroplasmic mitochondrial DNA (mtDNA) single deletion. Levels of mRNAs transcribed from genes located within the deletions were not decreased, suggesting that the remaining wild-type mtDNA was still transcribed. Those muscle fibres with characteristic abnormal mitochondrial proliferation always showed overexpression of mRNAs and rRNAs transcribed from mitochondrial genes located outside the deletions.
View Article and Find Full Text PDF