Publications by authors named "Burt Fowler"

Resistive random access memory (RRAM) is a leading candidate in the race towards emerging nonvolatile memory technologies. The sneak path current (SPC) problem is one of the main difficulties in crossbar memory configurations. RRAM devices with desirable properties such as a selectorless, 1R-only architecture with self-rectifying behavior are potential SPC solutions.

View Article and Find Full Text PDF

Selectorless graphite-based resistive random-access memory (RRAM) has been demonstrated by utilizing the intrinsic nonlinear resistive switching (RS) characteristics, without an additional selector or transistor for low-power RRAM array application. The low effective dielectric constant value (k) layer of graphite or graphite oxide is utilized, which is beneficial in suppressing sneak-path currents in the crossbar RRAM array. The tail-bits with low nonlinearity can be manipulated by the positive voltage pulse, which in turn can alleviate variability and reliability issues.

View Article and Find Full Text PDF

We realize a device with biological synaptic behaviors by integrating silicon oxide (SiO(x)) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiO(x)-based resistive switching materials.

View Article and Find Full Text PDF

In this work, we investigated SiO(x)-based interfacial resistive switching in planar metal-insulator-metal structures using physical/chemical/electrical analyses. This work helps clarify the interfacial reaction process and mechanism in SiO(x), and also shows the potential for high temperature operation in future nonvolatile memory applications.

View Article and Find Full Text PDF

We report on a highly compact, one diode-one resistor (1D-1R) nanopillar device architecture for SiOx-based ReRAM fabricated using nanosphere lithography (NSL). The intrinsic SiOx-based resistive switching element and Si diode are self-aligned on an epitaxial silicon wafer using NSL and a deep-Si-etch process without conventional photolithography. AC-pulse response in 50 ns regime, multibit operation, and good reliability are demonstrated.

View Article and Find Full Text PDF