Publications by authors named "Burrage T"

Background: The Gaussia princeps luciferase is used as a stand-alone reporter of transgene expression for in vitro and in vivo expression systems due to the rapid and easy monitoring of luciferase activity. We sought to simultaneously quantitate production of other recombinant proteins by transcriptionally linking the Gaussia princeps luciferase gene to other genes of interest through the foot-and-mouth disease virus 2A translational interrupter sequence.

Results: We produced six plasmids, each encoding a single open reading frame, with the foot-and-mouth disease virus 2A sequence placed either N-terminal or C-terminal to the Gaussia princeps luciferase gene.

View Article and Find Full Text PDF

African Swine Fever Virus (ASFV) is a high-consequence transboundary animal pathogen that often causes hemorrhagic disease in swine with a case fatality rate close to 100%. Lack of treatment or vaccine for the disease makes it imperative that safe and efficacious vaccines are developed to safeguard the swine industry. In this study, we evaluated the immunogenicity of seven adenovirus-vectored novel ASFV antigens, namely A151R, B119L, B602L, EP402RΔPRR, B438L, K205R and A104R.

View Article and Find Full Text PDF

A reverse vaccinology system, Vaxign, was used to identify and select a subset of five African Swine Fever (ASF) antigens that were successfully purified from human embryonic kidney 293 (HEK) cells and produced in Modified vaccinia virus Ankara (MVA) viral vectors. Three HEK-purified antigens [B646L (p72), E183L (p54), and O61R (p12)], and three MVA-vectored antigens [B646L, EP153R, and EP402R (CD2v)] were evaluated using a prime-boost immunization regimen swine safety and immunogenicity study. Antibody responses were detected in pigs following prime-boost immunization four weeks apart with the HEK-293-purified p72, p54, and p12 antigens.

View Article and Find Full Text PDF

The African swine fever virus (ASFV) causes a fatal hemorrhagic disease in domestic swine, and at present no treatment or vaccine is available. Natural and gene-deleted, live attenuated strains protect against closely related virulent strains; however, they are yet to be deployed and evaluated in the field to rule out chronic persistence and a potential for reversion to virulence. Previous studies suggest that antibodies play a role in protection, but induction of cytotoxic T lymphocytes (CTLs) could be the key to complete protection.

View Article and Find Full Text PDF

Here, we engineered two FMD viruses with histidine residues inserted into or fused to the FMDV capsid. Both 6xHis viruses exhibited growth kinetics, plaque morphologies and antigenic characteristics similar to wild-type virus. The 6xHis tag allowed one-step purification of the mutant virions by Co(2+) affinity columns.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is an arbovirus which is vectored by soft ticks of the Ornithodoros spp. and in the sylvatic cycle infects wart hogs and bush pigs. ASFV infection of domestic swine causes a high mortality disease.

View Article and Find Full Text PDF

Next generation, foot-and-mouth disease (FMD) molecular vaccines based on replication deficient human adenovirus serotype 5 viral vectored delivery of FMD capsid genes (AdFMD) are being developed by the United States Dept. of Homeland Security and industry partners. The strategic goal of this program is to develop AdFMD licensed vaccines for the USA National Veterinary Stockpile for use, if needed, as emergency response tools during an FMD outbreak.

View Article and Find Full Text PDF

In February and March 2009, approximately 1,500 backyard pigs of variable age became sick, and approximately 700 of them died or were euthanized in the Lower Artibonite Valley and the Lower Plateau of the Republic of Haiti. The main clinical sign was posterior ataxia followed by paresis and/or paralysis on the second or third day of illness. No gross lesions were observed at postmortem examinations.

View Article and Find Full Text PDF

The three SAT serotype viruses, endemic in Africa, are well known for their difficulty to adapt to cell culture. The viral mechanism involved in foot-and-mouth disease virus (FMDV) tissue tropism and cell-entry is not well understood. A recombinant, small plaque-forming virus (vSAT1tc), derived from a tissue culture-adapted SAT1 virus (SAR/9/81tc), revealed four amino acid substitutions (VP3 Asp192→Tyr; VP3 Ser217→Ile; VP1 Ala69→Gly and VP1 Asn110→Lys) in the capsid, compared to the SAR/9/81wt isolate collected from infected impala epithelium.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) is the type species of the Aphthovirus genus within the Picornaviridae family. Infection of cells with positive-strand RNA viruses results in a rearrangement of intracellular membranes into viral replication complexes. The origin of these membranes remains unknown; however induction of the cellular process of autophagy is beneficial for the replication of poliovirus, suggesting that it might be advantageous for other picornaviruses.

View Article and Find Full Text PDF

In 2007, Vietnam experienced swine disease outbreaks causing clinical signs similar to the 'porcine high fever disease' that occurred in China during 2006. Analysis of diagnostic samples from the disease outbreaks in Vietnam identified porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV-2). Additionally, Escherichia coli and Streptococcus equi subspecies zooepidemicus were cultured from lung and spleen, and Streptococcus suis from one spleen sample.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) produces one of the most infectious of all livestock diseases, causing extensive economic loss in areas of breakout. Like other viral pathogens, FMDV recruits proteins encoded by host cell genes to accomplish the entry, replication, and release of infectious viral particles. To identify such host-encoded proteins, we employed an antisense RNA strategy and a lentivirus-based library containing approximately 40,000 human expressed sequence tags (ESTs) to randomly inactivate chromosomal genes in a bovine kidney cell line (LF-BK) that is highly susceptible to FMDV infection and then isolated clones that survived multiple rounds of exposure to the virus.

View Article and Find Full Text PDF

To develop a more efficacious human adenovirus (Ad5)-vectored foot-and-mouth disease virus (FMDV) subunit vaccine (Ad5-A24) we have included coding regions for FMDV nonstructural proteins 2B and 2C. These proteins are involved in membrane re-arrangements resulting in the proliferation of cytoplasmic vesicles which serve as the sites of virus replication. Cells infected with a vector containing full-length 2B (Ad5-CI-A24-2B) had a significant increase in the number of cytoplasmic vesicles as compared to cells infected with the original vector or a vector containing full-length 2BC.

View Article and Find Full Text PDF

Classical swine fever virus (CSFV)-macrophage interactions during infection were analysed by examining macrophage transcriptional responses via microarray. Eleven genes had increased mRNA levels (>2.5-fold, P<0.

View Article and Find Full Text PDF

Rabbit Hemorrhagic Disease (RHD) is a severe acute viral disease specifically affecting the European rabbit Oryctolagus cuniculus. As the European rabbit is the predominant species of domestic rabbit throughout the world, RHD contributes towards significant losses to rabbit farming industries and endangers wild populations of rabbits in Europe and other predatory animals in Europe that depend upon rabbits as a food source. Rabbit Hemorrhagic Disease virus (RHDV) - a Lagovirus belonging to the family Caliciviridae is the etiological agent of RHD.

View Article and Find Full Text PDF

African swine fever virus (ASFV) produces a fatal acute hemorrhagic fever in domesticated pigs that potentially is a worldwide economic threat. Using an expressed sequence tag (EST) library-based antisense method of random gene inactivation and a phenotypic screen for limitation of ASFV replication in cultured human cells, we identified six host genes whose cellular functions are required by ASFV. These included three loci, BAT3 (HLA-B-associated transcript 3), C1qTNF (C1q and tumor necrosis factor-related protein 6), and TOM40 (translocase of outer mitochondrial membrane 40), for which antisense expression from a tetracycline-regulated promoter resulted in reversible inhibition of ASFV production by >99%.

View Article and Find Full Text PDF

Although antibody-mediated immune mechanisms have been shown to be important in immunity to ASF, it remains unclear what role virus neutralizing antibodies play in the protective response. Virus neutralizing epitopes have been identified on three viral proteins, p30, p54, and p72. To evaluate the role(s) of these proteins in protective immunity, pigs were immunized with baculovirus-expressed p30, p54, p72, and p22 from the pathogenic African swine fever virus (ASFV) isolate Pr4.

View Article and Find Full Text PDF

Recently, we reported that African swine fever virus (ASFV) multigene family (MGF) 360 and 530 genes are significant swine macrophage host range determinants that function by promoting infected-cell survival. To examine the function of these genes in ASFV's arthropod host, Ornithodoros porcinus porcinus, an MGF360/530 gene deletion mutant (Pr4Delta35) was constructed from an ASFV isolate of tick origin, Pr4. Pr4Delta35 exhibited a significant growth defect in ticks.

View Article and Find Full Text PDF

Pathogenic African swine fever virus (ASFV) isolates primarily target cells of the mononuclear-phagocytic system in infected swine and replicate efficiently in primary macrophage cell cultures in vitro. ASFVs can, however, be adapted to grow in monkey cell lines. Characterization of two cell culture-adapted viruses, MS16 and BA71V, revealed that neither virus replicated in macrophage cell cultures.

View Article and Find Full Text PDF

An epizootic of vesicular disease occurred in a group of semi-domesticated California sea lions (Zalophus californianus) during the months of April and May 1997. Ten castrated mature male sea lions, ages 12 to 19 yr, were housed in three adjacent open-ocean net enclosures in San Diego Bay (California, USA). Four animals (40%) developed oral and extremity vesicles, anorexia, and were reluctant to perform learned behaviors.

View Article and Find Full Text PDF

Ethyleneimine (EI) and N-acetylethyleneimine (AEI) have been shown to inactivate viruses belonging to most of the families described by the International Committee for the Taxonomy of Viruses. The mechanism by which they inactivate the viruses has not been established. In this paper, experiments with foot-and-mouth disease virus (FMDV) and poliovirus are described which indicate that the inactivating lesion is on the RNA.

View Article and Find Full Text PDF

Inactivation of foot-and-mouth disease virus (FMDV) and poliovirus by ethyleneimine (EI) and N-acetylethyleneimine (AEI) has been studied at 25 degrees and at 37 degrees C and in different ionic conditions. FMDV is inactivated rapidly in 100 mM Tris pH 7.6 by each reagent at both temperatures.

View Article and Find Full Text PDF

The African swine fever virus (ASFV) genome contains a gene, 9GL, with similarity to yeast ERV1 and ALR genes. ERV1 has been shown to function in oxidative phosphorylation and in cell growth, while ALR has hepatotrophic activity. 9GL encodes a protein of 119 amino acids and was highly conserved at both nucleotide and amino acid levels among all ASFV field isolates examined.

View Article and Find Full Text PDF

Although the Malawi Lil20/1 (MAL) strain of African swine fever virus (ASFV) was isolated from Ornithodoros sp. ticks, our attempts to experimentally infect ticks by feeding them this strain failed. Ten different collections of Ornithodorus porcinus porcinus ticks and one collection of O.

View Article and Find Full Text PDF