The outcome of the exposure of living organisms to ionizing radiation is determined by the distribution of the associated energy deposition at different spatial scales. Radiation proceeds through ionizations and excitations of hit molecules with an ~ nm spacing. Approaches such as nanodosimetry/microdosimetry and Monte Carlo track-structure simulations have been successfully adopted to investigate radiation quality effects: they allow to explore correlations between the spatial clustering of such energy depositions at the scales of DNA or chromosome domains and their biological consequences at the cellular level.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) represent the molecular origin of ionizing-radiation inflicted biological effects. An increase in the ionization density causes more complex, clustered DSBs that can be processed by resection also in G1 phase, where repair of resected DSBs is considered erroneous and may contribute to the increased biological effectiveness of heavy ions in radiotherapy. To investigate the resection regulation of complex DSBs, we exposed G1 cells depleted for different candidate factors to heavy ions or α-particle radiation.
View Article and Find Full Text PDFAberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense.
View Article and Find Full Text PDFRadiation therapy efficiently eliminates cancer cells and reduces tumor growth. To understand collateral agonistic and antagonistic effects of this treatment on the immune system, we examined the impact of x-ray irradiation on human T cells. We find that, in a major population of leukemic Jurkat T cells and peripheral blood mononuclear cells, clinically relevant radiation doses trigger delayed oscillations of the cytosolic Ca2+ concentration.
View Article and Find Full Text PDFExposing cells to DNA damaging agents, such as ionizing radiation (IR) or cytotoxic chemicals, can cause DNA double-strand breaks (DSBs), which are crucial to repair to maintain genetic integrity. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification (PTM), which has been reported to be involved in the DNA damage response (DDR) and chromatin remodeling. Here, we investigated the impact of O-GlcNAcylation on the DDR, DSB repair and chromatin status in more detail.
View Article and Find Full Text PDFChromatin architecture plays major roles in gene regulation as well as in the repair of DNA damaged by endogenous or exogenous factors, such as after radiation. Opening up the chromatin might provide the necessary accessibility for the recruitment and binding of repair factors, thus facilitating timely and correct repair. The observed formation of ionizing radiation-induced foci (IRIF) of factors, such as 53BP1, upon induction of DNA double-strand breaks have been recently linked to local chromatin decompaction.
View Article and Find Full Text PDFDNA double-strand break (DSB) repair is crucial to maintain genomic stability. The fidelity of the repair depends on the complexity of the lesion, with clustered DSBs being more difficult to repair than isolated breaks. Using live cell imaging of heavy ion tracks produced at a high-energy particle accelerator we visualised simultaneously the recruitment of different proteins at individual sites of complex and simple DSBs in human cells.
View Article and Find Full Text PDFIn recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions-but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for the inspection of the molecular environment of fluorophores in living cells. Here, we present the use of single organic minor groove DNA binder dyes in FLIM for measuring chromatin changes following modulation of chromatin structure in living cells.
View Article and Find Full Text PDFBackground And Purpose: High linear-energy-transfer (LET) irradiation (IR) is characterized by unique depth-dose distribution and advantageous biologic effectiveness compared to low-LET-IR, offering promising alternatives for radio-resistant tumors in clinical oncology. While low-LET-IR induces single DNA lesions such as double-strand breaks (DSBs), localized energy deposition along high-LET particle trajectories induces clustered DNA lesions that are more challenging to repair. During DNA damage response (DDR) 53BP1 and ATM are required for Kap1-dependent chromatin relaxation, thereby sustaining heterochromatic DSB repair.
View Article and Find Full Text PDFBrain development and function depend on the directed and coordinated migration of neurons from proliferative zones to their final position. The secreted glycoprotein Reelin is an important factor directing neuronal migration. Loss of Reelin function results in the severe developmental disorder lissencephaly and is associated with neurological diseases in humans.
View Article and Find Full Text PDFMeasurements of protein recruitment and the formation of repair complexes at DNA double-strand breaks in real time provide valuable insight into the regulation of the early DNA damage response. Here, we describe the use of live cell microscopy in combination with ionizing radiation as a tool to evaluate the influence of ATM and its site-specific phosphorylation of target proteins on these processes. Recommendations are made for the preparation of the cells and the design of specialized cell chambers for the localized (and/or targeted) irradiation with charged particles at accelerator beamlines as well as the microscopic equipment and protocol to obtain high-resolution, sensitive fluorescence measurements.
View Article and Find Full Text PDFBackground And Purpose: High linear energy transfer (LET) radiotherapy offers superior dose conformity and biological effectiveness compared with low-LET radiotherapy, representing a promising alternative for radioresistant tumours. A prevailing hypothesis is that energy deposition along the high-LET particle trajectories induces DNA lesions that are more complex and clustered and therefore more challenging to repair. The precise molecular mechanisms underlying the differences in radiobiological effects between high-LET and low-LET radiotherapies remain unclear.
View Article and Find Full Text PDFMultiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs.
View Article and Find Full Text PDFIonizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells.
View Article and Find Full Text PDFThe MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the association of members of the complex or ATM activation.
View Article and Find Full Text PDFWe present here an analysis of DSB induction and processing after irradiation with X-rays in an extended dose range based on the use of the γH2AX assay. The study was performed by quantitative flow cytometry measurements, since the use of foci counting would result in reasonable accuracy only in a limited dose range of a few Gy. The experimental data are complemented by a theoretical analysis based on the GLOBLE model.
View Article and Find Full Text PDFLow- and high-linear energy transfer (LET) ionising radiation are effective cancer therapies, but produce structurally different forms of DNA damage. Isolated DNA damage is repaired efficiently; however, clustered lesions may be more difficult to repair, and are considered as significant biological endpoints. We investigated the formation and repair of DNA double-strand breaks (DSBs) and clustered lesions in human fibroblasts after exposure to sparsely (low-LET; delivered by photons) and densely (high-LET; delivered by carbon ions) ionising radiation.
View Article and Find Full Text PDFRepair of DNA double strand breaks (DSBs) is influenced by the chemical complexity of the lesion. Clustered lesions (complex DSBs) are generally considered more difficult to repair and responsible for early and late cellular effects after exposure to genotoxic agents. Resection is commonly used by the cells as part of the homologous recombination (HR) pathway in S- and G2-phase.
View Article and Find Full Text PDFIonizing radiation induces DNA double strand breaks (DSBs) which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations.
View Article and Find Full Text PDFChromatin modifications are long known as an essential part of the orchestrated response resulting in the repair of radiation-induced DNA double-strand breaks (DSBs). Only recently, however, the influence of the chromatin architecture itself on the DNA damage response has been recognised. Thus for heterochromatic DSBs the sensing and early recruitment of repair factors to the lesion occurs within the heterochromatic compartments, but the damage sites are subsequently relocated from the inside to the outside of the heterochromatin.
View Article and Find Full Text PDFDNA double-strand breaks (DSB) are considered as the most deleterious DNA lesions, and their repair is further complicated by increasing damage complexity. However, the molecular effects of clustered lesions are yet not fully understood. As the locally restricted phosphorylation of H2AX to form γH2AX is a key step in facilitating efficient DSB repair, we investigated this process after localized induction of clustered damage by ionizing radiation.
View Article and Find Full Text PDFIn cells exposed to low linear energy transfer (LET) ionizing-radiation (IR), double-strand-breaks (DSBs) form within clustered-damage-sites (CDSs) from lesions disrupting the DNA sugar-phosphate backbone. It is commonly assumed that all DSBs form promptly and are immediately detected by the cellular DNA-damage-response (DDR) apparatus. However, there is evidence that the pool of DSBs detected by physical methods, such as pulsed-field gel electrophoresis (PFGE), comprises not only promptly forming DSBs (prDSBs) but also DSBs developing during lysis at high temperatures from thermally-labile sugar-lesions (TLSLs).
View Article and Find Full Text PDFThe response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions.
View Article and Find Full Text PDFThe cyclin-dependent kinase inhibitor CDKN1A/p21 confers cell-cycle arrest in response to DNA damage and inhibits DNA replication through its direct interaction with the proliferating cell nuclear antigen (PCNA) and cyclin/cyclin-dependent kinase complexes. Previously, we reported that in response to densely ionizing radiation CDKN1A rapidly is recruited to the sites of particle traversal, and that CDKN1A foci formation in response to heavy ions is independent of its transactivation by TP53. Here, we show that exposure of normal human fibroblasts to X-rays or to H2O2 also induces nuclear accumulations of CDKN1A.
View Article and Find Full Text PDF