Am J Physiol Lung Cell Mol Physiol
September 2004
We previously reported that angiotensin II stimulates an increase in nitric oxide production in pulmonary artery endothelial cells. The aims of this study were to determine which receptor subtype mediates the angiotensin II-dependent increase in nitric oxide production and to investigate the roles of the angiotensin type 1 and type 2 receptors in modulating angiotensin II-dependent vasoconstriction in pulmonary arteries. Pulmonary artery endothelial cells express both angiotensin II type 1 and type 2 receptors as assessed by RT-PCR, Western blot analysis, and flow cytometry.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2002
Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production.
View Article and Find Full Text PDFObservations that physiological levels of O2 control the rates of production of reactive O2 species by systems including NAD(P)H oxidases and that certain of these species have signalling mechanisms that regulate vascular tone has resulted in consideration of these systems in processes that mediate the sensing of changes in P(O2). Evidence exists for the participation of hydrogen peroxide-dependent regulation of prostaglandin production and soluble guanylate cyclase activity, resulting from the metabolism of peroxide by cyclooxygenase and catalase, respectively, in P(O2)-elicited signalling mechanisms that regulate vascular force generation. A microsomal NADH oxidase whose activity is controlled by the redox status of cytosolic NAD(H) appears to function as a P(O2) sensor in bovine pulmonary and coronary arteries where changes in O2 levels control the production of superoxide anion-derived hydrogen peroxide and a cGMP-mediated relaxation response.
View Article and Find Full Text PDFAlthough angiotensin II (ANG II) is a known pulmonary vasoconstrictor, the purpose of this study was to examine the effect of ANG II on pulmonary artery endothelial cell nitric oxide synthase (ecNOS) mRNA and protein expression. Cultured bovine pulmonary artery endothelial (BPAE; passages 5-8) cells were incubated for 0-12 h with 10(-6) M ANG II. Total RNA was extracted, and ecNOS expression was assessed by Northern blot analysis.
View Article and Find Full Text PDFWe have recently reported in normal isolated-perfused rat lungs that low basal tone appears to be regulated by nitric oxide (NO)-dependent and -independent mechanisms of soluble guanylate cyclase activation. In this study, we examined the role of NO in the regulation of pulmonary artery (PA) tone from rats with renin-dependent hypertension. Rats were made hypertensive by ligating the abdominal aorta above the left and below the right renal artery (aortic coarctation, AC).
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
October 1996
Patients with systemic hypertension of various etiologies maintain their pulmonary artery pressures within normal limits. We have reported in isolated perfused rat lungs that low basal tone appears to be regulated by nitric oxide (NO)-dependent and -independent mechanisms of soluble guanylate cyclase activation, and similar results are seen in isolated small pulmonary arteries (PA) from these animals. The abdominal aorta of rats was ligated above the left and below the right renal artery (aortic coarctation, AC).
View Article and Find Full Text PDFPulmonary hypoxic vasoconstriction appears to have both endothelium-dependent and -independent regulatory pathways. We have previously described a mechanism of guanylate cyclase activation in isolated pulmonary arteries that is smooth muscle contained and oxygen tension dependent. In this study we examine this mechanism, involving H2O2 metabolism by catalase, and its relationship to endothelial-derived nitric oxide in the regulation of pulmonary artery pressure (PAP) by oxygen tension.
View Article and Find Full Text PDFWe find spontaneous light emission from isolated Krebs-Henseleit-perfused rabbit lungs when the light-emitting super-oxide trap lucigenin is added to the perfusate. Lucigenin light emission appears to be specific for superoxide anion, because light emission from the lung caused by a superoxide-generating system is abolished by superoxide dismutase but not by catalase or dimethylthiourea. We also studied the relative sensitivity of lucigenin photoemission to superoxide and to H2O2 in vitro.
View Article and Find Full Text PDFHydrogen peroxide (H2O2), but not tertbutyl hydroperoxide, produces a concentration-dependent vasodilation of the pulmonary circulation in isolated saline perfused rabbit lungs when pulmonary arterial pressures (PAP) are raised with the thromboxane analogue U-46619. This vasodilation was enhanced in the presence of indomethacin, suggesting that H2O2 possesses both a prostaglandin-mediated constrictor and an additional dilator mechanism. In isolated rabbit intrapulmonary arteries the endothelium did not alter the dose-dependent relaxation of arterial rings to H2O2, and indomethacin enhanced the relaxant response of the peroxide.
View Article and Find Full Text PDFIsolated bovine coronary arteries were treated with 10 mM diethyldithiocarbamate (DETCA) for 30 minutes to deplete the cytosolic ZnCu form of superoxide dismutase (SOD). This treatment completely inhibited the endothelium- and cGMP-dependent relaxation to acetylcholine (mediated via the endothelium-derived relaxing factor, which is thought to be nitric oxide) without significantly inhibiting endothelium-dependent relaxation to arachidonic acid (mediated by prostaglandins). DETCA treatment of endothelial cells cultured from the coronary arteries inhibited bradykinin-elicited release of endothelium-derived relaxing factor, which was detected by bioassay on an isolated rabbit aorta in the presence of extracellular SOD.
View Article and Find Full Text PDFJ Appl Physiol (1985)
July 1991
The present study examines the influence of the endothelium (E), Ca2+ concentration, cyanide and monocrotaline (MCT) pretreatment on the responses of isolated rat hilar pulmonary arterial rings (PA) to hypoxia. In PA precontracted with phenylephrine, hypoxia induced an initial E-dependent relaxation phase followed by an E-independent transient contraction and a final relaxation. An increase in Ca2+ concentration from 1.
View Article and Find Full Text PDFOxidants have complex effects on pulmonary vascular reactivity. They can stimulate production of vasoconstrictor arachidonate mediators and can also cause vasodilation through activation of guanylate cyclase. Oxidants can also inactivate vasomotor phenomenon by interfering with mechanisms of signal transduction or smooth muscle contraction.
View Article and Find Full Text PDFWe have recently suggested that relaxation of isolated precontracted intrapulmonary arteries from calves to H2O2 or O2 may involve the activation of guanylate cyclase by peroxide metabolism via catalase. In this study, ethanol, an agent that modulates peroxide metabolism by catalase and selectively inhibits the activation of guanylate cyclase by H2O2 but not by nitric oxide-related activators, was employed to further investigate the role of catalase in pulmonary arterial relaxation and guanylate cyclase activation by O2 and H2O2. In precontracted pulmonary arteries, ethanol reverses H2O2-elicited relaxation and increases in guanosine 3',5'-cyclic monophosphate (cGMP) tissue levels without affecting similar responses to nitroprusside.
View Article and Find Full Text PDFAdv Prostaglandin Thromboxane Leukot Res
August 1989
J Appl Physiol (1985)
January 1989
The effects of O2 tension on force in precontracted isolated pulmonary arterial smooth muscle from calf lungs was characterized to investigate the mechanism of O2 tension sensing. These arteries display a decrease in force with increasing O2 tension that is antagonized via inhibition of soluble guanylate cyclase activation by 10 microM methylene blue or inactivation of catalase by pretreatment with 50 mM 3-amino-1,2,4-triazole for 30 min. O2 tension-dependent relaxation is associated with an increase in intracellular H2O2 metabolism through catalase (detected as the peroxide-dependent inactivation of tissue catalase activity by aminotriazole) and cyclic guanosine 5'-monophosphate (cGMP), known mediators of relaxation in calf pulmonary arteries.
View Article and Find Full Text PDF