Publications by authors named "Burhanuddin Yeop Majlis"

Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications. However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity and strong electromechanical coupling. In this study, we investigated the affect of the presence of a guiding layer made from titanium/gold on the surface acoustic wave propagation of the GaN/sapphire substrate.

View Article and Find Full Text PDF

The super enhancement of silicon band edge luminescence when co-implanted with boron and carbon is reported. The role of boron in the band edge emissions in silicon was investigated by deliberately introducing defects into the lattice structures. We aimed to increase the light emission intensity from silicon by boron implantation, leading to the formation of dislocation loops between the lattice structures.

View Article and Find Full Text PDF

SPR-based technology has emerged as one of the most versatile optical tools for analyzing the binding mechanism of molecular interaction due to its inherent advantages in sensing applications, such as real-time, label-free, and high sensitivity characteristics. SPR is widely used in various fields, including healthcare, environmental management, and food-borne illness analysis. Meanwhile, kidney disease has grown to be one of the world's most serious public health problems in recent decades, resulting in physical degeneration and even death.

View Article and Find Full Text PDF

The LC-MEMS pressure sensor is an attractive option for an implantable sensor. It senses pressure wirelessly through an LC resonator, eliminating the requirement for electrical wiring or a battery system. However, the sensitivity of LC-MEMS pressure sensors is still comparatively low, especially in biomedical applications, which require a highly-sensitive sensor to measure low-pressure variations.

View Article and Find Full Text PDF

In this study, 550 nm thick cubic silicon carbide square diaphragms were back etched from Si substrate. Then, indentation was carried out to samples with varying dimensions, indentation locations, and loads. The influence of three parameters is documented by analyzing load-displacement curves.

View Article and Find Full Text PDF

We designed and demonstrated a double-peak one-dimensional photonic crystal (1D PhC) cavity device by integrating two 1D PhCs cavities in a parallel configuration. The device design is proposed so that it can be used for bio-sensing purposes and has a self-compensation ability to reduce the measurement error caused by the change of the surrounding temperature. By combining two light resonances, two resonance peaks are obtained.

View Article and Find Full Text PDF

In this study, we present a comprehensive review of polymer-based microelectromechanical systems (MEMS) electromagnetic (EM) actuators and their implementation in the biomedical engineering field. The purpose of this review is to provide a comprehensive summary on the latest development of electromagnetically driven microactuators for biomedical application that is focused on the movable structure development made of polymers. The discussion does not only focus on the polymeric material part itself, but also covers the basic mechanism of the mechanical actuation, the state of the art of the membrane development and its application.

View Article and Find Full Text PDF

This review collates around 100 papers that developed micro-electro-mechanical system (MEMS) capacitive microphones. As far as we know, this is the first comprehensive archive from academia on this versatile device from 1989 to 2019. These works are tabulated in term of intended application, fabrication method, material, dimension, and performances.

View Article and Find Full Text PDF

Nephrogenic diabetes insipidus (NDI), which can be congenital or acquired, results from the failure of the kidney to respond to the anti-diuretic hormone (ADH). This will lead to excessive water loss from the body in the form of urine. The kidney, therefore, has a crucial role in maintaining water balance and it is vital to restore this function in an artificial kidney.

View Article and Find Full Text PDF

In this study, we demonstrated the fabrication of the concave conic shape microneedle with the aid of COMSOL Multiphysics simulation. The stress and buckling of the microneedle structure were simulated by applying various loads ranging from 50 to 800 g perpendiculars to the tip in order to predict the occurrence of microneedles structure deformation. The simulation study indicated that the surface buckling deformation does not occur to the microneedle structure with the increment of the load.

View Article and Find Full Text PDF

Highly ordered vertically grown zinc oxide nanorods (ZnO NRs) were synthesized on ZnO-coated SiO/Si substrate using zinc acetylacetonate hydrate as a precursor via a simple hydrothermal method at 85 °C. We used 0.05 M of ZnO solution to facilitate the growth of ZnO NRs and the immersion time was varied from 0.

View Article and Find Full Text PDF

We employed dielectrophoresis to a yeast cell suspension containing amyloid-beta proteins (Aβ) in a microfluidic environment. The Aβ was separated from the cells and characterized using the gradual dissolution of Aβ as a function of the applied dielectrophoretic parameters. We established the gradual dissolution of Aβ under specific dielectrophoretic parameters.

View Article and Find Full Text PDF
Article Synopsis
  • * The device was created using a straightforward solution-based technique and showed impressive performance with a large multilevel memory capacity and a current ratio of 10, linked to the use of molybdenum disulfide and graphene quantum dots for charge trapping.
  • * Additional analyses, including transmission electron microscopy and electrical tests on endurance and retention, were carried out to evaluate the device's structure and stability at room temperature.
View Article and Find Full Text PDF

Discussing the topic of the capability of dielectrophoresis (DEP) devices in terms of the selective detection and rapid manipulation of particles based on the DEP force (F) via contactless methods is challenging in medical research, drug discovery and delivery. Nonetheless, the process of the selective detection and rapid manipulation of particles via contactless DEP based on dielectric particles and the surrounding medium can reduce the effects of major issues, including physical contact with the particles and medium contamination to overcome operational difficulties. In this review, DEP microelectromechanical system (MEMS) microelectrodes with a tapered profile for the selective detection and rapid manipulation of particles were studied and compared with those of conventional designs with a straight-cut profile.

View Article and Find Full Text PDF

Gallium Nitride (GaN) is considered as the second most popular semiconductor material in industry after silicon. This is due to its wide applications encompassing Light Emitting Diode (LED) and power electronics. In addition, its piezoelectric properties are fascinating to be explored as electromechanical material for the development of diverse microelectromechanical systems (MEMS) application.

View Article and Find Full Text PDF

A simple fabrication method for the surface modification of an electroosmotic silicon microchannel using thermal dry oxidation is presented. The surface modification is done by coating the silicon surface with a silicon dioxide (SiO₂) layer using a thermal oxidation process. The process aims not only to improve the surface quality of the channel to be suitable for electroosmotic fluid transport but also to reduce the channel width using a simple technique.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on
  • cell contact formation
  • , a crucial process in biotechnology, which can be enhanced using
  • dielectrophoresis (DEP)
  • —a straightforward technique for manipulating cells. - Researchers demonstrate how optimizing
  • DEP microelectrode configurations
  • can minimize harmful effects like dielectric heating, improve cell clustering, and move away from traditional linear arrangements of cells. - The research combines
  • experimental work and mathematical modeling
  • with COMSOL to explore capillary-based microfluidic systems, offering new protocols for cell manipulation that could benefit areas like diagnostics and understanding cellular interactions.
View Article and Find Full Text PDF

A valveless electromagnetic (EM) micropump with a matrix-patterned magnetic polymer composite actuator membrane structure was successfully designed and fabricated. The composite membrane structure is made of polydemethylsiloxane (PDMS) that is mixed with magnetic particles and patterned in matrix blocks. The matrix magnetic composite membrane was fabricated using a soft lithography process and expected to have a compact structure having sufficient magnetic force for membrane deformation and maintained membrane flexibility.

View Article and Find Full Text PDF

Anodic aluminium oxide (AAO) is a self-organised nanopore that has been widely studied due to the ease of its synthesization and pore properties manipulation. However, pore growth behaviour under different geometrical surfaces is rarely studied, particularly on the effect of combined curved surfaces towards pore growth properties, which is crucial in designing unique porous platform for specific applications. This paper reports study on the decisive effect of curvature surfaces on development of pore structure and properties at a constant potential.

View Article and Find Full Text PDF

This work investigates the surface plasmon resonance (SPR) response of 50-nm thick nano-laminated gold film using Kretschmann-based biosensing for detection of urea and creatinine in solution of various concentrations (non-enzymatic samples). Comparison was made with the presence of urease and creatininase enzymes in the urea and creatinine solutions (enzymatic samples), respectively. Angular interrogation technique was applied using optical wavelengths of 670 nm and 785 nm.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a copper oxide nanowire (CuO NW) sensor that detects hydrogen gas (H2) effectively when exposed to ultraviolet (UV) light.
  • The sensor exhibits better stability and response at both room temperature and 100°C, especially benefiting from UV light, which enhances its performance.
  • UV light appears to improve the interaction between the CuO NWs and hydrogen gas, allowing the sensor to function well without needing high temperatures.
View Article and Find Full Text PDF

Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation.

View Article and Find Full Text PDF

The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms.

View Article and Find Full Text PDF

The miniaturization trend leads to the development of a graphene based nanoelectromechanical (NEM) switch to fulfill the high demand in low power device applications. In this article, we highlight the finite element (FEM) simulation of the graphene-based NEM switches of fixed-fixed ends design with beam structures which are perforated and intact. Pull-in and pull-out characteristics are analyzed by using the FEM approach provided by IntelliSuite software, version 8.

View Article and Find Full Text PDF

Our studies focused on improving the biocompatibility properties of two microfluidic prototyping substrates i.e. polyurethane methacrylate (PUMA) and off-stoichiometry thiol-ene (OSTE-80) polymer by Ar and N plasma treatment.

View Article and Find Full Text PDF