Neuroblastoma (NB) is the most common extracranial childhood cancer, caused by the improper differentiation of developing trunk neural crest cells (tNCC) in the sympathetic nervous system. The N-methyladenosine (mA) epitranscriptomic modification controls post-transcriptional gene expression but the mechanism by which the mA methyltransferase complex METTL3/METTL14/WTAP is recruited to specific loci remains to be fully characterized. We explored whether the mA epitranscriptome could fine-tune gene regulation in migrating/differentiating tNCC.
View Article and Find Full Text PDFBackground: The vascular heterogeneity of glioblastomas (GB) remains an important area of research, since tumor progression and patient prognosis are closely tied to this feature. With this study, we aim to identify gene expression profiles associated with MRI-defined tumor vascularity and to investigate its relationship with patient prognosis.
Methods: The study employed MRI parameters calculated with DSC Perfusion Quantification of ONCOhabitats glioma analysis software and RNA-seq data from the TCGA-GBM project dataset.
Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance.
View Article and Find Full Text PDFDigital pathology and artificial intelligence are promising emerging tools in precision oncology as they provide more robust and reproducible analysis of histologic, morphologic and topologic characteristics of tumor cells and the surrounding microenvironment. This study aims to develop digital image analysis workflows for therapeutic assessment in preclinical in vivo models. For this purpose, we generated pipelines that enable automatic detection and quantification of vitronectin and αvβ3 in heterotopic high-risk neuroblastoma xenografts, demonstrating that digital analysis workflows can be used to provide robust detection of vitronectin secretion and αvβ3 expression by malignant neuroblasts and to evaluate the possibility of combining traditional chemotherapy (etoposide) with extracellular matrix-targeted therapies (cilengitide).
View Article and Find Full Text PDFTreatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading.
View Article and Find Full Text PDFPatient-derived cancer 3D models are a promising tool that will revolutionize personalized cancer therapy but that require previous knowledge of optimal cell growth conditions and the most advantageous parameters to evaluate biomimetic relevance and monitor therapy efficacy. This study aims to establish general guidelines on 3D model characterization phenomena, focusing on neuroblastoma. We generated gelatin-based scaffolds with different stiffness and performed SK-N-BE(2) and SH-SY5Y aggressive neuroblastoma cell cultures, also performing co-cultures with mouse stromal Schwann cell line (SW10).
View Article and Find Full Text PDFBackground: Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible.
View Article and Find Full Text PDFTumor progression is mediated by reciprocal interaction between tumor cells and their surrounding tumor microenvironment (TME), which among other factors encompasses the extracellular milieu, immune cells, fibroblasts, and the vascular system. However, the complexity of cancer goes beyond the local interaction of tumor cells with their microenvironment. We are on the path to understanding cancer from a systemic viewpoint where the host macroenvironment also plays a crucial role in determining tumor progression.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used.
View Article and Find Full Text PDFWe propose a comprehensive approach to oncological disease, based on a systemic consideration of biology, health and disease. Our two previous review articles focused on tumour microenvironment and the discovery of new biomarkers; here we discuss the practical application of these principles to pathology, through the identification, evaluation and quantitative analysis of new prognostic and predictive factors (Immunoscore, TIME). We also consider the clinical use of promising, better tolerated treatments, such as immunotherapy.
View Article and Find Full Text PDFPathology and clinical oncology work hand in hand so that techniques and treatments, biomarkers and antibodies share the common goal of identifying integral new treatment regimens that are more effective and less aggressive. Evidence shows how tissue mechanics affect carcinogenesis and that tumor heterogeneity depends on metabolic stromal alteration and the Warburg effect of malignant cells, regulated directly by PD-1, becoming a target for immunotherapy. Proliferation and apoptosis depend on mitochondrial dysfunction in tumor cells, determining the grade of chemo/radio-resistance.
View Article and Find Full Text PDFCancer cells all share the feature of being immersed in a complex environment with altered cell-cell/cell-extracellular element communication, physicochemical information, and tissue functions. The so-called tumour microenvironment (TME) is becoming recognised as a key factor in the genesis, progression and treatment of cancer lesions. Beyond genetic mutations, the existence of a malignant microenvironment forms the basis for a new perspective in cancer biology where connections at the system level are fundamental.
View Article and Find Full Text PDFTumors are complex networks of constantly interacting elements: tumor cells, stromal cells, immune and stem cells, blood/lympathic vessels, nerve fibers and extracellular matrix components. These elements can influence their microenvironment through mechanical and physical signals to promote tumor cell growth. To get a better understanding of tumor biology, cooperation between multidisciplinary fields is needed.
View Article and Find Full Text PDFBackground: Vitronectin is a multifunctional glycoprotein known in several human tumors for its adhesive role in processes such as cell growth, angiogenesis and metastasis. In this study, we examined vitronectin expression in neuroblastoma to investigate whether this molecule takes part in cell-cell or cell-extracellular matrix interactions that may confer mechanical properties to promote tumor aggressiveness.
Methods: We used immunohistochemistry and image analysis tools to characterize vitronectin expression and to test its prognostic value in 91 neuroblastoma patients.
The group of diseases that we call cancer share a biological structure formed by a complex ecosystem, with altered intercellular communication, information fields, development and tissue function. Beyond the genetic alterations of the tumor cell, the demonstration of an altered ecosystem, with interconnections at systemic levels, opens up a new perspective on cancer biology and behavior. Different tumor facets, such as morphology, classification, clinical aggressiveness, prognosis and response to treatment now appear under a comprehensive vision that offers a new horizon of study, research and clinical management.
View Article and Find Full Text PDFBackground: Neuroblastic tumours (NBTs) are paediatric solid tumours derived from embryonic neural crest cells which harbour their own cancer stem cells (CSC). There is evidence indicating that CSC may be responsible for tumour progression, chemotherapy resistance and recurrence in NBTs. Oct4 is a transcription factor which plays a key role in mammal embryonic development and stem cell fate regulation.
View Article and Find Full Text PDF