In this Committee Proceedings, representatives from the Early Stage Professional (ESP) committee highlight the innovative discoveries and key take-aways from oral presentations at the 2022 International Society for Cell and Gene Therapy (ISCT) Annual Meeting that cover the following subject categories: Immunotherapy, Exosomes and Extracellular Vesicles, HSC/Progenitor Cells and Engineering, Mesenchymal Stromal Cells, and ISCT Late-Breaking Abstracts.
View Article and Find Full Text PDFBrain metastases are a leading cause of death in patients with breast cancer. The lack of clinical trials and the presence of the blood-brain barrier limit therapeutic options. Furthermore, overexpression of the human epidermal growth factor receptor 2 (HER2) increases the incidence of breast cancer brain metastases (BCBM).
View Article and Find Full Text PDFA combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG-PBNP-PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB-related mortality. The efficacy of the CpG-PBNP-PTT nanoimmunotherapy in a clinically relevant, TH-MYCN murine NB model (9464D) overexpressing MYCN is tested.
View Article and Find Full Text PDFGlioblastoma is characterized by the robust infiltration of immunosuppressive tumor-associated myeloid cells (TAMCs). It is not fully understood how TAMCs survive in the acidic tumor microenvironment to cause immunosuppression in glioblastoma. Metabolic and RNA-seq analysis of TAMCs revealed that the arginine-ornithine-polyamine axis is up-regulated in glioblastoma TAMCs but not in tumor-infiltrating CD8 T cells.
View Article and Find Full Text PDFImmunotherapy has revolutionized the treatment of many tumors. However, most glioblastoma (GBM) patients have not, so far, benefited from such successes. With the goal of exploring ways to boost anti-GBM immunity, we developed a B cell-based vaccine (BVax) that consists of 4-1BBL+ B cells activated with CD40 agonism and IFNγ stimulation.
View Article and Find Full Text PDFNatural killer (NK) cells are attractive effector cells of the innate immune system against human immunodeficiency virus (HIV) and cancer. However, NK cell therapies are limited by the fact that target cells evade NK cells, for example, in latent reservoirs (in HIV) or through upregulation of inhibitory signals (in cancer). To address this limitation, we describe a biodegradable nanoparticle-based "priming" approach to enhance the cytotoxic efficacy of peripheral blood mononuclear cell-derived NK cells.
View Article and Find Full Text PDFBackground: Medulloblastoma (MB), the most common pediatric brain cancer, presents with a poor prognosis in a subset of patients with high risk disease, or at recurrence, where current therapies are ineffective. Cord blood (CB) natural killer (NK) cells may be promising off-the-shelf effector cells for immunotherapy due to their recognition of malignant cells without the need for a known target, ready availability from multiple banks, and their potential to expand exponentially. However, they are currently limited by immune suppressive cytokines secreted in the MB tumor microenvironment including Transforming Growth Factor β (TGF-β).
View Article and Find Full Text PDFChimeric antigen receptor (CAR)-modified T cells have successfully harnessed T cell immunity against malignancies, but they are by no means the only cell therapies in development for cancer. Systemic immunity is thought to play a key role in combatting neoplastic disease; in this vein, genetic modifications meant to explore other components of T cell immunity are being evaluated. In addition, other immune cells-from both the innate and adaptive compartments-are in various stages of clinical application.
View Article and Find Full Text PDFPurpose: The ability of natural killer (NK) cells to lyse allogeneic targets, without the need for explicit matching or priming, makes them an attractive platform for cell-based immunotherapy. Umbilical cord blood is a practical source for generating banks of such third-party NK cells for "off-the-shelf" cell therapy applications. NK cells are highly cytolytic, and their potent antitumor effects can be rapidly triggered by a lack of HLA expression on interacting target cells, as is the case for a majority of solid tumors, including neuroblastoma.
View Article and Find Full Text PDFCampylobacter jejuni is a leading cause of bacterial diarrhoea worldwide. The objective of this study was to examine the association between C. jejuni capsule types and clinical signs and symptoms of diarrhoeal disease in a well-defined birth cohort in Peru.
View Article and Find Full Text PDFWe report the generation of magnetically responsive, cord blood-derived natural killer (NK) cells using iron oxide nanoparticles (IONPs). NK cells are a promising immune cell population for cancer cell therapy as they can target and lyse target tumor cells without prior education. However, NK cells cannot home to disease sites based on antigen recognition, instead relying primarily on external stimuli and chemotactic gradients for transport.
View Article and Find Full Text PDFHere we report the first incidence of New Delhi metallo-β-lactamase (NDM-1)-producing in Peru, identified via a strain-based nosocomial surveillance project carried out in Lima and Iquitos. The gene was detected by multiplex polymerase chain reaction (PCR) and confirmed by loci sequencing. is a nearly ubiquitous and promiscuous nosocomial pathogen, and the acquisition of by may facilitate an increase in the prevalence of this important resistance marker in other nosocomial pathogens.
View Article and Find Full Text PDFAntimicrob Agents Chemother
February 2019
The objective of this study was to determine the phenotypic patterns of antibiotic resistance and the epidemiology of drug-resistant spp. from a low-resource setting. A birth cohort of 303 patients was followed until 5 years of age.
View Article and Find Full Text PDFBackground: Campylobacter is one of the main causes of gastroenteritis worldwide. Most of the current knowledge about the epidemiology of this food-borne infection concerns two species, C. coli and C.
View Article and Find Full Text PDFTheranostic nanoparticles offer the potential for mixing and matching disparate diagnostic and therapeutic functionalities within a single nanoparticle for the personalized treatment of diseases. In this article, we present composite iron oxide-gadolinium-containing Prussian blue nanoparticles (FeO@GdPB) as a novel theranostic agent for T-weighted magnetic resonance imaging (MRI) and photothermal therapy (PTT) of tumors. These particles combine the well-described properties and safety profiles of the constituent FeO nanoparticles and gadolinium-containing Prussian blue nanoparticles.
View Article and Find Full Text PDFCord blood (CB) natural killer (NK) cells are promising effector cells for tumor immunotherapy but are currently limited by immune-suppressive cytokines in the tumor microenvironment, such as transforming growth factor (TGF-β). We observed that TGF-β inhibits expression of activating receptors such as NKG2D and DNAM1 and decreases killing activity against glioblastoma tumor cells through inhibition of perforin secretion. To overcome the detrimental effects of TGF-β, we engrafted a dominant negative TGF-β receptor II (DNRII) on CB-derived NK cells by retroviral transduction and evaluated their ability to kill glioblastoma cells in the presence of TGF-β.
View Article and Find Full Text PDFMalignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of function, necessitating the development of novel treatment methods for this patient population. Here, we describe a novel combination therapy comprising MEK inhibition and nanoparticle-based photothermal therapy (PTT) for MPNSTs.
View Article and Find Full Text PDFWe describe "photothermal immunotherapy," which combines Prussian blue nanoparticle (PBNP)-based photothermal therapy (PTT) with anti-CTLA-4 checkpoint inhibition for treating neuroblastoma, a common, hard-to-treat pediatric cancer. PBNPs exhibit pH-dependent stability, which makes them suitable for intratumorally-administered PTT. PBNP-based PTT is able to lower tumor burden and prime an immune response, specifically an increased infiltration of lymphocytes and T cells to the tumor area, which is complemented by the antitumor effects of anti-CTLA-4 immunotherapy, providing a more durable treatment against neuroblastoma in an animal model.
View Article and Find Full Text PDFNatural killer (NK) cells are members of the innate immune system that recognize target cells via activating and inhibitory signals received through cell receptors. Derived from the lymphoid lineage, NK cells are able to produce cytokines and exert a cytotoxic effect on viral infected and malignant cells. It is their unique ability to lyse target cells rapidly and without prior education that renders NK cells a promising effector cell for adoptive cell therapy.
View Article and Find Full Text PDFAim: To engineer a novel nanoimmunotherapy comprising Prussian blue nanoparticles (PBNPs) conjugated to antigen-specific cytotoxic T lymphocytes (CTL), which leverages PBNPs for their photothermal therapy (PTT) capabilities and Epstein-Barr virus (EBV) antigen-specific CTL for their ability to traffic to and destroy EBV antigen-expressing target cells.
Materials & Methods: PBNPs and CTL were independently biofunctionalized. Subsequently, PBNPs were conjugated onto CTL using avidin-biotin interactions.
Purpose: Chimeric antigen receptor-modified T cells (CAR-T) have demonstrated encouraging results in early-phase clinical trials. Successful adaptation of CAR-T technology for CEA-expressing adenocarcinoma liver metastases, a major cause of death in patients with gastrointestinal cancers, has yet to be achieved. We sought to test intrahepatic delivery of anti-CEA CAR-T through percutaneous hepatic artery infusions (HAIs).
View Article and Find Full Text PDFChimeric antigen receptor-modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function.
View Article and Find Full Text PDFThe Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) cohort study communities in Peru are located in Loreto province, in a rural area 15 km from the city of Iquitos. This riverine population of approximately 5000 individuals is fairly representative of Loreto. The province lags behind the rest of the country in access to water and sanitation, per capita income, and key health indicators including infant mortality (43.
View Article and Find Full Text PDFOur phase I Hepatic Immunotherapy for Metastases (HITM) trial tested the safety of chimeric antigen receptor-modified T-cell (CAR-T) hepatic artery infusions (HAI) for unresectable carcinoembryonic antigen (CEA)+ liver metastases (LM). High neutrophil:lymphocyte ratios (NLR) predict poor outcome in cancer patients and we hypothesized that NLR changes would correlate with early responses to CAR-T HAI. Six patients completed the protocol.
View Article and Find Full Text PDF