Publications by authors named "Buresi A"

Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases.

View Article and Find Full Text PDF

Cephalopods possess the most complex centralized nervous system among molluscs and the molecular determinants of its development have only begun to be explored. To better understand how evolved their brain and body axes, we studied Sepia officinalis embryos and investigated the expression patterns of neural regionalization genes involved in the mediolateral patterning of the neuroectoderm in model species. SoxB1 expression reveals that the embryonic neuroectoderm is made of several distinct territories that constitute a large part of the animal pole disc.

View Article and Find Full Text PDF

Embryonic cuttlefish can first respond to a variety of sensory stimuli during early development in the egg capsule. To examine the neural basis of this ability, we investigated the emergence of sensory structures within the developing epidermis. We show that the skin facing the outer environment (not the skin lining the mantle cavity, for example) is derived from embryonic domains expressing the Sepia officinalis ortholog of pax3/7, a gene involved in epidermis specification in vertebrates.

View Article and Find Full Text PDF

Among the Lophotrochozoa, centralization of the nervous system reaches an exceptional level of complexity in cephalopods, where the typical molluscan ganglia become highly developed and fuse into hierarchized lobes. It is known that ganglionic primordia initially emerge early and simultaneously during cephalopod embryogenesis but no data exist on the process of neuron differentiation in this group. We searched for members of the elav/hu family in the cuttlefish Sepia officinalis, since they are one of the first genetic markers of postmitotic neural cells.

View Article and Find Full Text PDF

The origin of cerebral structures is a major issue in both developmental and evolutionary biology. Among Lophotrochozoans, cephalopods present both a derived nervous system and an original body plan, therefore they constitute a key model to study the evolution of nervous system and molecular processes that control the neural organization. We characterized a partial sequence of an ortholog of otx2 in Sepia officinalis embryos, a gene specific to the anterior nervous system and eye development.

View Article and Find Full Text PDF