Publications by authors named "Burak Metin"

The effect of surface treatment on the dynamics of adsorbed poly(methyl acrylate) (PMA) was studied using deuterium NMR and temperature-modulated differential scanning calorimetry (TMDSC). The solid-state deuterium NMR experiments were performed using PMA-d(3), deuterated on the methyl group. The line shape changes for PMA-d(3) were followed as a function of temperature and compared for the polymer on untreated silica, organically modified (treated) silica (reacted with hexamethyltrisilazane), and in bulk.

View Article and Find Full Text PDF

The segmental dynamics of poly(methyl acrylate-d3) (PMA-d3) adsorbed in the pores of anopore membranes has been investigated using deuterium NMR over the temperature range 25-80 degrees C. The onset of the NMR glass-transition temperature (Tg) for the adsorbed samples was approximately 15 degrees C higher than that for the bulk sample. The adsorbed polymer contained segments with restricted mobility (glassy), even at the highest temperatures studied, at which the bulk polymer showed only mobile segments.

View Article and Find Full Text PDF

The effect of molecular mass on the segmental dynamics of poly(methyl acrylate) (PMA) adsorbed on silica was studied using deuterium quadrupole-echo nuclear magnetic resonance (NMR) and modulated differential scanning calorimetry. Samples adsorbed on silica (all about 1.5 mg PMA/m2 silica) were shown to have more restricted segmental mobility, and higher Tg's, than the corresponding bulk PMA samples.

View Article and Find Full Text PDF

The segmental dynamics of bulk poly(methyl acrylate) (PMA) were studied as a function of molecular mass in the glass-transition region using 2H NMR and modulated differential scanning calorimetry (MDSC). Quadrupole-echo 2H NMR spectra were obtained for four samples of methyl-deuterated PMA-d3 with different molecular masses. The resulting spectra were fit using superpositions of simulated spectra generated from the MXQET simulation program, based on a model incorporating nearest-neighbor jumps from positions on the vertices of a truncated icosahedron (soccer-ball shape).

View Article and Find Full Text PDF