Publications by authors named "Bura R"

Roadside vegetated filters strips (VFSs) reduce roadway runoff pollution by intercepting stormwater and reducing pollutant loads. VFS maintenance and operating costs can be reduced by designing the VFSs to serve as sites for production of marketable biomass. This biomass can provide feedstock for the emerging bioeconomy producing renewable fuels and biobased chemicals and products.

View Article and Find Full Text PDF

The use of agricultural waste biomass for nanocellulose production has gained interest due to its environmental and economic benefits compared to conventional bleached pulp feedstock. However, there is still a need to establish robust process technologies that can accommodate the variability of waste feedstocks and to understand the effects of feedstock characteristics on the final nanofiber properties. Here, lignocellulosic nanofibers with unique properties are produced from various waste biomass based on a simple and low-cost process using mild operating conditions.

View Article and Find Full Text PDF

Background: The overall goal of the present study is to investigate the economics of an integrated biorefinery converting hybrid poplar into jet fuel, xylitol, and formic acid. The process employs a combination of integrated biological, thermochemical, and electrochemical conversion pathways to convert the carbohydrates in poplar into jet fuel, xylitol, and formic acid production. The C5-sugars are converted into xylitol via hydrogenation.

View Article and Find Full Text PDF

Cellulose nanofibrils are typically prepared from high-purity bleached pulp through harsh chemical treatments (e.g., TEMPO oxidation), resulting in high costs and environmental impact.

View Article and Find Full Text PDF

Background: In thyroid surgery, achieving accurate haemostasis is fundamental in order to avoid the occurrence of complications. Energy-based devices are currently extensively utilized in this field of surgery. This study aims to compare Harmonic Focus and Thunderbeat Open Fine Jaw with regard to surgical outcomes and complications.

View Article and Find Full Text PDF
Article Synopsis
  • Biological lignin valorization is crucial for sustainable biorefineries, but current methods struggle with proper lignin fractionation, affecting carbohydrate processing efficiency.
  • Researchers propose 'plug-in processes of lignin' that integrate advanced pretreatment technologies, improving lignin bioconversion and enhancing carbohydrate processing simultaneously.
  • These innovations could significantly lower production costs for polyhydroxyalkanoates, demonstrating a pathway to more sustainable biorefinery designs that optimize both carbon efficiency and capital costs.
View Article and Find Full Text PDF

Background: Ethanol biorefineries need to lower their overall production costs to become economically feasible. Two strategies to achieve this are to reduce costs using cheaper feedstocks or to increase the ethanol production yield. Low-cost feedstocks usually have high non-structural components (NSC) content; therefore, a new process is necessary to accommodate these feedstocks and overcome the negative effects of NSC.

View Article and Find Full Text PDF

Most of the current commercial production of glacial acetic acid (GAA) is by petrochemical routes, primarily methanol carbonylation. GAA is an intermediate in the production of plastics, textiles, dyes, and paints. GAA production from biomass might be an economically viable and sustainable alternative to petroleum-derived routes.

View Article and Find Full Text PDF

Background: Similar to biofuels, numerous chemicals produced from petroleum resources can also be made from biomass. In this research we investigate cradle to biorefinery exit gate life cycle impacts of producing acetic acid from poplar biomass using a bioconversion process. A key step in developing acetic acid for commercial markets is producing a product with 99.

View Article and Find Full Text PDF

Background: Production and use of bio-based products offer advantages over conventional petrochemicals, yet the relatively high cost of production has restricted their mainstream adoption. Optimization of wastewater treatment processes could reduce capital expenditures, lowering the barrier to market entry for lignocellulosic biorefineries. This paper characterizes wastewater associated with lignocellulosic ethanol production and evaluates potential wastewater treatment operations.

View Article and Find Full Text PDF

Background: Whole-tree chips will be a likely feedstock for future biorefineries because of their low cost. Non-structural components (NSC), however, represent a significant part of whole-tree chips. The NSC can account for more than 10% of whole-tree poplar mass when the trees are grown in short rotation cycles.

View Article and Find Full Text PDF

Background: In the biofuel industry, land productivity is important to feedstock growers and conversion process product yield is important to the biorefinery. The crop productivity, however, may not positively correlate with bioconversion yield. Therefore, it is important to evaluate sugar yield and biomass productivity.

View Article and Find Full Text PDF

Very few cases of gastric paragangliomas have been reported in the literature to date. We report a rare case of parietal gastric paraganglioma fortuitously detected during intraoperative exploration. A 82-years-old woman presented to our emergency room for abdominal pain.

View Article and Find Full Text PDF

Background: Infrastructure compatible hydrocarbon biofuel proposed to qualify as renewable transportation fuel under the U.S. Energy Independence and Security Act of 2007 and Renewable Fuel Standard (RFS2) is evaluated.

View Article and Find Full Text PDF

Background: Feedstock cost is a substantial barrier to the commercialization of lignocellulosic biorefineries. Poplar grown using a short rotation coppice (SRC) system has the potential to provide a low-cost feedstock and economically viable sugar yields for fuels and chemicals production. In the coppice management regime, poplars are harvested after 2 years' growth to develop the root system and establish the trees.

View Article and Find Full Text PDF

Background: Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step.

View Article and Find Full Text PDF

Acetic acid is an important chemical raw material that can be produced directly from sugars in lignocellulosic biomass. Development of kinetic models that capture the bioconversion dynamics of multiple sugar systems will be critical to optimization and process control in future lignocellulosic biorefinery processes. In this work, a kinetic model was developed for the single- and dual-substrate conversion of xylose and glucose to acetic acid using the acetogen Moorella thermoacetica.

View Article and Find Full Text PDF

A systematic study of bioconversion of lignocellulosic sugars to acetic acid by Moorella thermoacetica (strain ATCC 39073) was conducted. Four different water-soluble fractions (hydrolysates) obtained after steam pretreatment of lignocellulosic biomass were selected and fermented to acetic acid in batch fermentations. M.

View Article and Find Full Text PDF

This study investigates the effect of mechanical refining to improve the sugar yield from biomass processed under a wide range of steam pretreatment conditions. Hybrid poplar chips were steam pretreated using six different conditions with or without SO2. The resulting water insoluble fractions were subjected to mechanical refining.

View Article and Find Full Text PDF

Background: Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. The efficacy of the bioconversion process using mixed biomass, however, has not been thoroughly investigated.

View Article and Find Full Text PDF

Background: A substantial barrier to commercialization of lignocellulosic ethanol production is a lack of process specific sensors and associated control strategies that are essential for economic viability. Current sensors and analytical techniques require lengthy offline analysis or are easily fouled in situ. Raman spectroscopy has the potential to continuously monitor fermentation reactants and products, maximizing efficiency and allowing for improved process control.

View Article and Find Full Text PDF

Purpose: During carotid endarterectomy (CEA), an intolerance to the cross-clamping (CC) can occur. The purpose of this study was to evaluate whether preoperative magnetic resonance angiography (MRA) can predict CC intolerance.

Material And Methods: Seventy-one patients (57 males, 14 females, mean age 71.

View Article and Find Full Text PDF

Preoperative imaging using a range of imaging modalities has become increasingly popular for preoperative planning in plastic surgery, in particular in perforator flap surgery. Modalities in this role include ultrasound (US), magnetic resonance angiography (MRA), and computed tomographic angiography (CTA). The evidence for the use of these techniques has been reported in only a handful of studies.

View Article and Find Full Text PDF

A systematic study was conducted characterizing the effect of furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid concentration on the production of xylitol and ethanol by a novel endophytic yeast, Rhodotorula mucilaginosa strain PTD3. The influence of different inhibitor concentrations on the growth and fermentation abilities of PTD3 cultivated in synthetic nutrient media containing 30 g/l xylose or glucose were measured during liquid batch cultures. Concentrations of up to 5 g/l of furfural stimulated production of xylitol to 77 % of theoretical yield (10 % higher compared to the control) by PTD3.

View Article and Find Full Text PDF

An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose.

View Article and Find Full Text PDF