Publications by authors named "Bunk O"

Type I collagen physiological scaffold for tissue regeneration is considered one of the widely used biomaterials for tissue engineering and medical applications. It is hierarchically organized: five laterally staggered molecules are packed within fibrils, arranged into fascicles and bundles. The structural organization is correlated to the direction and intensity of the forces which can be loaded onto the tissue.

View Article and Find Full Text PDF

We argue for a perspective on bilingual heritage speakers as native speakers of both their languages and present results from a large-scale, cross-linguistic study that took such a perspective and approached bilinguals and monolinguals on equal grounds. We targeted comparable language use in bilingual and monolingual speakers, crucially covering broader repertoires than just formal language. A main database was the open-access RUEG corpus, which covers comparable informal vs.

View Article and Find Full Text PDF

Glycosyl-ation is the process of combining one or more glucose molecules (or other monosaccharides) with molecules of a different nature (which are therefore glycosyl-ated). In biochemistry, glycosyl-ation is catalyzed by several specific enzymes, and assumes considerable importance since it occurs mainly at the expense of proteins and phospho-lipids which are thus transformed into glycoproteins and glycolipids. Conversely, in diabetes and aging, glycation of proteins is a phenomenon of non-enzymatic nature and thus not easily controlled.

View Article and Find Full Text PDF

The purpose of this study is to use a multi-technique approach to detect the effects of spatially fractionated X-ray Microbeam (MRT) and Minibeam Radiation Therapy (MB) and to compare them to seamless Broad Beam (BB) irradiation. Healthy- and Glioblastoma (GBM)-bearing male Fischer rats were irradiated in-vivo on the right brain hemisphere with MRT, MB and BB delivering three different doses for each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray Phase Contrast Imaging-Computed Tomography (XPCI-CT), histology, immunohistochemistry, X-ray Fluorescence (XRF), Small- and Wide-Angle X-ray Scattering (SAXS/WAXS).

View Article and Find Full Text PDF

Diseases like widespread diabetes or rare galactosemia may lead to high sugar concentrations in the human body, thereby promoting the formation of glycoconjugates. Glycation of collagen, the formation of glucose bridges, is nonenzymatic and therefore cannot be prevented in any other way than keeping the sugar level low. It relates to secondary diseases, abundantly occurring in aging populations and diabetics.

View Article and Find Full Text PDF

Myelin insulates neuronal axons and enables fast signal transmission, constituting a key component of brain development, aging and disease. Yet, myelin-specific imaging of macroscopic samples remains a challenge. Here, we exploit myelin's nanostructural periodicity, and use small-angle X-ray scattering tensor tomography (SAXS-TT) to simultaneously quantify myelin levels, nanostructural integrity and axon orientations in nervous tissue.

View Article and Find Full Text PDF

Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS).

View Article and Find Full Text PDF

Across all branches of science, medicine and engineering, high-resolution microscopy is required to understand functionality. Although optical methods have been developed to `defeat' the diffraction limit and produce 3D images, and electrons have proven ever more useful in creating pictures of small objects or thin sections, so far there is no substitute for X-ray microscopy in providing multiscale 3D images of objects with a single instrument and minimal labeling and preparation. A powerful technique proven to continuously access length scales from 10 nm to 10 µm is ptychographic X-ray computed tomography, which, on account of the orthogonality of the tomographic rotation axis to the illuminating beam, still has the limitation of necessitating pillar-shaped samples of small (ca 10 µm) diameter.

View Article and Find Full Text PDF

In this paper, we present a data workflow developed to operate the adJUstiNg Gain detector FoR the Aramis User station (JUNGFRAU) adaptive gain charge integrating pixel-array detectors at macromolecular crystallography beamlines. We summarize current achievements for operating at 9 GB/s data-rate a JUNGFRAU with 4 Mpixel at 1.1 kHz frame-rate and preparations to operate at 46 GB/s data-rate a JUNGFRAU with 10 Mpixel at 2.

View Article and Find Full Text PDF

Breast microcalcifications are a common mammographic finding. Microcalcifications are considered suspicious signs of breast cancer and a breast biopsy is required, however, cancer is diagnosed in only a few patients. Reducing unnecessary biopsies and rapid characterization of breast microcalcifications are unmet clinical needs.

View Article and Find Full Text PDF

Blood glucose supplies energy to cells and is critical for the human brain. Glycation of collagen, the nonenzymatic formation of glucose-bridges, relates to diseases of aging populations and diabetics. This chemical reaction, together with its biomechanical effects, has been well studied employing animal models.

View Article and Find Full Text PDF

Native single-wavelength anomalous dispersion (SAD) is an attractive experimental phasing technique as it exploits weak anomalous signals from intrinsic light scatterers ( < 20). The anomalous signal of sulfur in particular, is enhanced at long wavelengths, however the absorption of diffracted X-rays owing to the crystal, the sample support and air affects the recorded intensities. Thereby, the optimal measurable anomalous signals primarily depend on the counterplay of the absorption and the anomalous scattering factor at a given X-ray wavelength.

View Article and Find Full Text PDF

Abdominal aortic and popliteal artery aneurysms are vascular diseases which show massive degeneration, weakening of the vascular wall and loss of the vascular tissue functionality. They are driven by inflammatory, hemodynamical factors and biological alterations that may lead, in the case of an abdominal aortic aneurysm, to sudden and dangerous ruptures of the arteries. Here, human aortic and popliteal aneurysm tissues were obtained during surgical repair, and studied by synchrotron radiation X-ray scanning microdiffraction and small-angle scattering, to investigate the microcalcifications present in the tissues.

View Article and Find Full Text PDF

In this work, the performance of thin silicon carbide membranes as material for radiation hard X-ray beam position monitors (XBPMs) is investigated. Thermal and electrical behavior of XBPMs made from thin silicon carbide membranes and single-crystal diamond is compared using finite-element simulations. Fabricated silicon carbide devices are also compared with a 12 µm commercial polycrystalline diamond XBPM at the Swiss Light Source at the Paul Scherrer Institute.

View Article and Find Full Text PDF

The accuracy of X-ray diffraction data is directly related to how the X-ray detector records photons. Here we describe the application of a direct-detection charge-integrating pixel-array detector (JUNGFRAU) in macromolecular crystallography (MX). JUNGFRAU features a uniform response on the subpixel level, linear behavior toward high photon rates, and low-noise performance across the whole dynamic range.

View Article and Find Full Text PDF

In X-ray computed tomography, the task of imaging only a local region of interest (ROI) inside a larger sample is very important. However, without a priori information, this ROI cannot be exactly reconstructed using only the image data limited to the ROI. We propose here an approach of region-of-interest tomography, which reconstructs a ROI within an object from projections of different fields of view acquired on a specific angular sampling scheme in the same tomographic experiment.

View Article and Find Full Text PDF

For many scientific questions gaining three-dimensional insight into a specimen can provide valuable information. We here present an instrument called "tOMography Nano crYo (OMNY)," dedicated to high resolution 3D scanning x-ray microscopy at cryogenic conditions via hard X-ray ptychography. Ptychography is a lens-less imaging method requiring accurate sample positioning.

View Article and Find Full Text PDF

Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data.

View Article and Find Full Text PDF

Nanoscale studies of bone provide key indicators to evidence subtle structural changes that may occur in the biomedical, forensic and archaeological contexts. One specific problem encountered in all those disciplines, for which the identification of nanostructural cues could prove useful, is to properly monitor the effect of heating on bone tissue. In particular, the mechanisms at work at the onset of heating are still relatively unclear.

View Article and Find Full Text PDF

Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography-a high-resolution coherent diffractive imaging technique-can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.

View Article and Find Full Text PDF

The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs.

View Article and Find Full Text PDF

Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure.

View Article and Find Full Text PDF

Bovine cornea was studied with scanning small-angle X-ray scattering (SAXS) microscopy, by using both synchrotron radiation and a microfocus laboratory source. A combination of statistical (adaptive binning and canonical correlation analysis) and crystallographic (pair distribution function analysis) approaches allowed inspection of the collagen lateral packing of the supramolecular structure. Results reveal (i) a decrease of the interfibrillar distance and of the shell thickness around the fibrils from the periphery to the center of the cornea, (ii) a uniform fibril diameter across the explored area, and (iii) a distorted quasi-hexagonal arrangement of the collagen fibrils.

View Article and Find Full Text PDF