Publications by authors named "Buneeva O"

Parkinsonism in rats induced by the pesticide rotenone is one of the most adequate models of Parkinson's disease (PD). Isatin (indole-2,3-dione) is an endogenous regulator found in mammals and humans and exhibiting a wide range of biological activities mediated by numerous isatin-binding proteins, including those associated with neurodegenerative pathology. A course of rotenone administration to rats caused behavioral impairments and changes in the profile and relative content of isatin-binding proteins in the brain.

View Article and Find Full Text PDF

Renalase (RNLS) is a recently discovered protein that plays an important role in the regulation of blood pressure by acting inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase that oxidizes isomeric forms of β-NAD(P)H. Extracellular renalase lacking its N-terminal peptide and cofactor FAD exerts various protective effects via non-catalytic mechanisms.

View Article and Find Full Text PDF

Comparative proteomic analysis of kidney tissue from normotensive (WKY) and spontaneously hypertensive (SHR) rats revealed quantitative and qualitative changes in renal proteins. The number of renal proteins specific for WKY rats (blood pressure 110-120 mm Hg) was 13-16. There were 20-24 renal proteins specific for SHR (blood pressure 180 mm Hg and more).

View Article and Find Full Text PDF

Isatin (indoldione-2,3) is an endogenous biological regulator found in the brain, peripheral tissues, and biological fluids of humans and animals. Its biological activity is realized via isatin-binding proteins, many of which were identified during proteomic profiling of the brain of mice and rats. A number of these proteins are related to the development of neurodegenerative diseases.

View Article and Find Full Text PDF

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells.

View Article and Find Full Text PDF

Effects of the endogenous neuroprotector isatin and the pharmacological drug afobazole (exhibiting neuroprotective properties) on behavioral reactions and quantitative changes in the brain proteomic profile have been investigated in rats with experimental rotenone Parkinsonism. A single dose of isatin (100 mg/kg subcutaneously on the last day of a 7-day course of rotenone administration) improved the motor activity of rats with rotenone-induced Parkinsonism in the open field test (horizontal movements) and the rotating rod test. Afobazole (10 mg/kg intraperitoneally, daily during the 7-day course of rotenone administration) reduced the manifestations of rigidity and postural instability.

View Article and Find Full Text PDF

Isatin (indoldione-2,3) is an endogenous regulator found in humans and animals. It exhibits a broad range of biological activity mediated by numerous isatin-binding proteins. Isatin produces neuroprotective effects in several experimental models of diseases, including Parkinsonism induced by the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine).

View Article and Find Full Text PDF

Affinity-based proteomic profiling is widely used for the identification of proteins involved in the formation of various interactomes. Since protein-protein interactions (PPIs) reflect the role of particular proteins in the cell, identification of interaction partners for a protein of interest can reveal its function. The latter is especially important for the characterization of multifunctional proteins, which can play different roles in the cell.

View Article and Find Full Text PDF

Proteasomes are highly conserved multienzyme complexes responsible for proteolytic degradation of the short-lived, regulatory, misfolded, and damaged proteins. They play an important role in the processes of brain plasticity, and decrease in their function is accompanied by the development of neurodegenerative pathology. Studies performed in different laboratories both on cultured mammalian and human cells and on preparations of the rat and rabbit brain cortex revealed a large number of proteasome-associated proteins.

View Article and Find Full Text PDF

The neurotoxins rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (МPTP) are used for modeling Parkinson's disease in animals (PD). They induce the mitochondrial respiratory chain dysfunction, which leads to the dopaminergic (DA) neuron degeneration. The advantage of the rotenone model consists in ability of rotenone to cause neurodegeneration showing symptoms and molecular biological characteristics similar to those of PD.

View Article and Find Full Text PDF

Disulfiram (DSF) and its derivatives were here investigated as antineoplastic agents, and their important feature is the ability to influence the UPS. We have recently shown that hydroxocobalamin catalyzes the aerobic oxidation of diethyldithiocarbamate to form disulfiram and its oxy-derivatives (DSFoxy; i.e.

View Article and Find Full Text PDF

Isatin (indole-2,3-dione) is an endogenous regulator exhibiting various effects mediated by numerous isatin-binding proteins localized in different compartments of cells of the brain and peripheral tissues. It attenuates manifestations of experimental parkinsonism induced by administration of the MPTP neurotoxin and reduces the movement disorders characteristic of this disease. The molecular mechanisms of the neuroprotective action of isatin include its direct interaction with proteasomes, intracellular supramolecular complexes responsible for the targeted elimination of proteins.

View Article and Find Full Text PDF

Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting various behavioral, biological, and pharmacological activities. Synthesis of isatin includes several crucial stages: cleavage of the tryptophan side chain and subsequent oxidation of the indole nucleus. Although these stages require concerted action of bacterial and host enzymes, there are two pathways of isatin formation: the host and bacterial pathways.

View Article and Find Full Text PDF

Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation.

View Article and Find Full Text PDF

We have isolated fractions of 26S and 20S proteasomes were from the rabbit liver and the brain. According to mass spectrometric (MS) analysis, the 26S proteasome fractions from these organs contained catalytic and regulatory subunits characteristic of the proteasome core and regulatory subunits. The 20S fractions of brain and liver proteasomes contained only catalytic proteasome subunits.

View Article and Find Full Text PDF

Fractions of 26S and 20S proteasomes isolated from the rabbit brain by the method of salt fractionation (salt-induced precipitation) contain intrinsic proteasome proteins responsible for assembly of the core particle and regulatory particle of proteasome and also proteasome-binding proteins. These proteasome-binding proteins include components of the ubiquitin-proteasome system, some ubiquitinated proteins, as well as cytoskeleton components, protective proteins, regulators of gene expression, cell division, and differentiation, and multifunctional proteins (mainly, glycolytic enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldolase, pyruvate kinase, etc.).

View Article and Find Full Text PDF

DJ-1, also known as Parkinson's disease protein 7, is a multifunctional protein ubiquitously expressed in cells and tissues. Interacting with proteins of various intracellular compartments, DJ-1 plays an important role in maintaining different cellular functions. Mutant DJ-1 forms containing amino acid substitutions (especially L166P), typical of Parkinson's disease, are characterized by impaired dimerization, stability, and folding.

View Article and Find Full Text PDF

Mitochondrial dysfunction and ubiquitin-proteasome system (UPS) failure contribute significantly to the development of Parkinson's disease (PD). The proteasome subunit Rpn13 located on the regulatory (19S) subparticle play an important role in the delivery of proteins, subjected to degradation, to the proteolytic (20S) part of proteasome. We have previously found several brain mitochondrial proteins specifically bound to Rpn13 (Buneeva et al.

View Article and Find Full Text PDF

Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases.

View Article and Find Full Text PDF

Isatin (indole-2,3-dione) is an endogenous regulator, exhibiting a wide range of biological and pharmacological activities. At doses of 100 mg/kg and above, isatin is neuroprotective in different experimental models of neurodegeneration. Good evidence exists that its effects are realized via interaction with numerous isatin-binding proteins identified in the brain and peripheral tissues studied.

View Article and Find Full Text PDF

Good evidence exists that the ubiquitin-proteasome system (UPS) plays an important role in degradation of mitochondrial proteins and membrane proteins associated with mitochondria (MAM proteins). Mitochondria contain all components of the ubiquitin-conjugating system, which are necessary for the attachment of ubiquitin molecules to target proteins, subjected to subsequent degradation in proteasomes. An important stage in the delivery of proteins for proteolytic degradation in proteasomes is their interaction with ubiquitin receptors located on the regulatory subunit (19S) of the proteasome: the Rpn10 or Rpn13 subunit.

View Article and Find Full Text PDF

The review summarizes the data of our research and published studies on the ubiquitination of brain mitochondrial proteins and its changes during the development of experimental parkinsonism and administration of the neuroprotector isatin (indole-2,3-dione) with special attention to the mitochondrial ubiquitin-conjugating system and location of ubiquitinated proteins in these organelles. Incubation of brain mitochondrial fraction with biotinylated ubiquitin in vitro resulted in the incorporation of biotinylated ubiquitin in both mitochondrial and mitochondria-associated proteins. According to the interactome analysis, the identified non-ubiquitinated proteins are able to form tight complexes with ubiquitinated proteins or their partners and components of mitochondrial membranes, in which interactions of ubiquitin chains with the ubiquitin-binding protein domains play an important role.

View Article and Find Full Text PDF

Isatin (indol-2,3-dione), an endogenous biofactor found in the brain, peripheral tissues and biological body fluids of humans and animals, exhibits a wide range of biological and pharmacological activities. They are realized via interaction with numerous isatin-binding proteins. Some of these proteins identified during proteomic profiling of the brain are involved in the development of neurodegenerative pathology.

View Article and Find Full Text PDF

It becomes increasingly clear that ubiquitination of cellular proteins is not an indispensable prerequisite of their degradation in proteasomes. There are a number of proteins to be eliminated which are not pre-ubiquitinated for their recognition by regulatory subcomplex of 26S proteasome, but which directly interact with the 20S proteasome core particle (20S proteasome). The obligatory precondition for such interaction consists in existence of disordered (hydrophobic) fragments in the target protein.

View Article and Find Full Text PDF