Publications by authors named "Buma W"

The spectroscopic and dynamic properties of methyl ferulate─a naturally occurring ultraviolet-protecting filter─and microsolvated methyl ferulate have been studied under molecular beam conditions using resonance-enhanced multiphoton ionization spectroscopy in combination with quantum chemical calculations. We demonstrate and rationalize how the phenyl substitution pattern affects the state ordering of the lower excited singlet state manifold and what the underlying reason is for the conformation-dependent Franck-Condon (FC) activity in the UV-excitation spectra. Studies on microsolvated methyl ferulate reveal potential coordination sites and the influence of such coordination on the spectroscopic properties.

View Article and Find Full Text PDF

In this study, we present the synthesis and analysis of a novel, air-stable, and solvent-resistant phosphaalkene switch. Using this symmetric switch, we have demonstrated degenerate photoisomerization experimentally for the first time. With a combination of photochemical-exchange NMR spectroscopy, ultrafast transient absorption spectroscopy, and quantum chemical calculations, we elucidate the isomerization mechanism of this symmetric phosphaalkene, comparing it to two other known molecules belonging to this class.

View Article and Find Full Text PDF

In recent years the use of synthetic UV filters in commercial skincare formulations has come under considerable scrutiny. Urocanic acid is a naturally occurring UV filter that could serve as a scaffold for developing next-generation biomimetic UV filters. We have carried out time-resolved electronic and vibrational absorption studies on urocanic acid and modified variants in various solvents on timescales spanning eighteen orders of magnitude; from femtoseconds to hours.

View Article and Find Full Text PDF

Visible-light-operated photoswitches are of growing interest in reversibly controlling molecular processes, enabling for example the precise spatiotemporal focusing of drug activity and manipulating the properties of materials. Therefore, many research efforts have been spent on seeking control over the (photo)physical properties of photoswitches, in particular the absorption maxima and the half-life. For photopharmacological applications, photoswitches should ideally be operated by visible light in at least one direction, and feature a metastable isomer with a half-life of 0.

View Article and Find Full Text PDF

Here we present the formation of an iminothioindoxyl (ITI)⊂Cage complex that retains the photochemical properties of the photoswitch within a confined environment in water. At the same time, besides ultrafast switching inside the cage, the ITI photoswitch displays an intriguing bifurcation of the excited state isomerization pathway when encapsulated.

View Article and Find Full Text PDF

The light-induced photocycloaddition of 9,10-phenanthrenequinone (PQ) with electron-rich alkenes (ERA), known as the PQ-ERA reaction, is a highly attractive photoclick reaction characterized by its operational simplicity and high biocompatibility. One essential aspect of photoclick reactions is their high rate, however the limited solubility of PQs often requires the use of a co-solvent. Evaluating the effect of different co-solvents on the PQ-ERA reaction and their influence on the reaction rate, we discovered that sulfur-containing compounds, in particular the frequently used solubilizing co-solvent DMSO, quench the triplet state of the PQ.

View Article and Find Full Text PDF

Molecular photoswitches are potent tools to construct dynamic functional systems and responsive materials that can be controlled in a non-invasive manner. As P-type photoswitches, stiff-stilbenes attract increasing interest, owing to their superiority in quantum yield, significant geometric differences between isomers, excellent thermostability and robust switching behavior. Nevertheless, the UV-light-triggered photoisomerization of stiff-stilbenes has been a main drawback for decades as UV light is potentially harmful and has low penetration depth.

View Article and Find Full Text PDF
Article Synopsis
  • Photoclick reactions leverage both light-driven processes and click chemistry for applications like surface functionalization and protein labeling, but they mainly rely on UV light, which can cause issues like degradation of other molecules.
  • The authors propose a new method using triplet-triplet energy transfer to enable these reactions with visible light, specifically showcasing the effectiveness of 9,10-phenanthrenequinones (PQs) reacting with electron-rich alkenes (ERAs) under various light wavelengths.
  • By developing an ortho-photoclick reaction system that responds to different colors of light, the product outcome can be finely tuned, allowing for more control in chemical reactions.
View Article and Find Full Text PDF

Anharmonicity strongly influences the absorption and emission spectra of polycyclic aromatic hydrocarbon (PAH) molecules. Here, IR-UV ion-dip spectroscopy experiments together with detailed anharmonic computations reveal the presence of fundamental, overtone, as well as 2- and 3-quanta combination band transitions in the far- and mid-infrared absorption spectra of phenylacetylene and its singly deuterated isotopologue. Strong absorption features in the 400-900 cm-1 range originate from CH(D) in-plane and out-of-plane wags and bends, as well as bending motions including the C≡C and CH bonds of the acetylene substituent and the aromatic ring.

View Article and Find Full Text PDF

Toxicological assessments of newly developed agrochemical agents consider chemical modifications and their metabolic and biotransformation products. To carry out an in silico hazard assessment, understanding the type of chemical modification and its location on the original compound can greatly enhance the reliability of the evaluation. Here, we present and apply a method based on liquid chromatography-mass spectrometry (LC-MS) enhanced with infrared ion spectroscopy (IRIS) to better delineate the molecular structures of transformation products before in silico toxicology evaluation.

View Article and Find Full Text PDF

Resonance Enhanced MultiPhoton Ionization spectroscopic techniques coupled with laser desorption and supersonic cooling have been employed to elucidate the photoactive properties of resveratrol. The observed excitation spectra give evidence for an internal-energy dependent trans-cis isomerisation pathway in the electronically excited state, while pump-probe studies show dynamics that are in line with what is known for the parent compound, trans-stilbene. Similar studies have been performed on a derivative of resveratrol with methoxy instead of hydroxy groups, a compound aimed to reduce previously observed photodegradation pathways of resveratrol.

View Article and Find Full Text PDF

Azonium ions formed by the protonation of tetra--methoxy-substituted aminoazobenzenes photoisomerize with red light under physiological conditions. This property makes them attractive as molecular tools for the photocontrol of physiological processes, for example, in photopharmacology. However, a mechanistic understanding of the photoisomerization process and subsequent thermal relaxation is necessary for the rational application of these compounds as well as for guiding the design of derivatives with improved properties.

View Article and Find Full Text PDF

We present a class of visible-light-driven molecular motors based on barbituric acid. Due to a serendipitous reactivity we observed during their synthesis, these motors possess a tertiary stereogenic centre on the upper half, characterised by a hydroxy group. Using a combination of femto- and nanosecond transient absorption spectroscopy, molecular dynamics simulations and low-temperature H NMR experiments we found that these motors operate similarly to push-pull second-generation overcrowded alkene-based molecular motors.

View Article and Find Full Text PDF
Article Synopsis
  • The PQ-ERA reaction is a promising light-activated reaction that combines 9,10-phenanthrenequinone with electron-rich alkenes, noted for its selectivity, control with light, and compatibility with biological systems.
  • Researchers found that substituting thiophene at the 3-position of the PQ structure significantly increases the reactivity of the PQ triplet state, overcoming limitations in traditional PQ compounds.
  • This enhancement leads to impressive outcomes, including high reaction efficiency (quantum yield up to 98%), increased reaction rates, and good performance in the presence of oxygen, supported by experimental and theoretical findings.
View Article and Find Full Text PDF

Determination of the absolute configuration of chiral molecules is a prerequisite for obtaining a fundamental understanding in any chirality-related field. The interaction with polarised light has proven to be a powerful means to determine this absolute configuration, but its application rests on the comparison between experimental and computed spectra for which the inherent uncertainty in conformational Boltzmann factors has proven to be extremely hard to tackle. Here we present a novel approach that overcomes this issue by combining a genetic algorithm that identifies the relevant conformers by accounting for the uncertainties in DFT relative energies, and a hierarchical clustering algorithm that analyses the trends in the spectra of the considered conformers and identifies on-the-fly when a given chiroptical technique is not able to make reliable predictions.

View Article and Find Full Text PDF
Article Synopsis
  • The 11.2/3.3 μm emission ratio is a key indicator for determining the size distribution of polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM).
  • The study shows that previous calculations of the infrared (IR) spectra of PAHs underestimated the intensity ratio by 34%, suggesting a need for more accurate methods which were achieved through higher level anharmonic calculations.
  • Adjustments to the intrinsic intensity ratio indicate that typical PAHs in reflection nebulae may be smaller than previously thought, with sizes ranging from 40 to 55 carbon atoms, supporting the idea that large PAHs may transform into stable fullerenes in the ISM.
View Article and Find Full Text PDF

Agricultural activities at lower temperatures lead to lower yields due to reduced plant growth. Applying photomolecular heater agrochemicals could boost yields under these conditions, but UV-induced degradation of these compounds needs to be assessed. In this study, we employ liquid chromatography-mass spectrometry (LC-MS) coupled with infrared ion spectroscopy (IRIS) to detect and identify the degradation products generated upon simulated solar irradiation of sinapoyl malate, a proposed photomolecular heater/UV filter compound.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the properties of flavone, a key compound for UV protection, using advanced two-photon ionization techniques under specific conditions.
  • Differences in excitation spectra were observed compared to earlier reports, and it was found that intersystem crossing is the primary way the excited state decays, aligning with previous research.
  • Microsolvation studies indicated that adding water molecules shifts excitation energies but doesn't significantly affect relaxation pathways, while photoionization measurements revealed the ionization energy critical to flavone's antioxidant function.
View Article and Find Full Text PDF

Infrared signatures of polycyclic aromatic hydrocarbons (PAHs) are detected towards many phases of stellar evolution. PAHs are major players in the carbon chemistry of the interstellar medium, forming the connection between small hydrocarbons and large fullerenes. However, as details on the formation of PAHs in these environments are still unclear, modeling their abundance and chemistry has remained far from trivial.

View Article and Find Full Text PDF

Synthetic molecular machines hold tremendous potential to revolutionize chemical and materials sciences. Their autonomous motion controlled by external stimuli allows to develop smart materials whose properties can be adapted on command. For the realisation of more complex molecular machines, it is crucial to design building blocks whose properties can be controlled by multiple orthogonal stimuli.

View Article and Find Full Text PDF

Light-to-heat conversion materials generate great interest due to their widespread applications, notable exemplars being solar energy harvesting and photoprotection. Another more recently identified potential application for such materials is in molecular heaters for agriculture, whose function is to protect crops from extreme cold weather and extend both the growing season and the geographic areas capable of supporting growth, all of which could help reduce food security challenges. To address this demand, a new series of phenolic-based barbituric absorbers of ultraviolet (UV) radiation has been designed and synthesised in a sustainable manner.

View Article and Find Full Text PDF

Supramolecular copolymerizations offer attractive options to introduce structural and functional diversity in supramolecular polymer materials. Yet, general principles and structure-property relationships for rational comonomer design remain lacking. Here, we report on the supramolecular (co)aggregation of a phenylpyridine and bipyridine derivative of a recently reported biphenyl tetracarboxamide-based monomer.

View Article and Find Full Text PDF

Imines are photoaddressable motifs useful in the development of new generations of molecular switches, but their operation with low-energy photons and control over isomer stability remain challenging. Based on a computational design, we developed phenylimino indolinone (PIO), a green-light-addressable T-type photoswitch showing negative photochromism. The isomerization behavior of this photoactuator of the iminothioindoxyl (ITI) class was studied using time-resolved spectroscopies on time scales from femtoseconds to the steady state and by quantum-chemical analyses.

View Article and Find Full Text PDF

Multi-responsive functional molecules are key for obtaining user-defined control of the properties and functions of chemical and biological systems. In this respect, pH-responsive photochromes, whose switching can be directed with light and acid-base equilibria, have emerged as highly attractive molecular units. The challenge in their design comes from the need to accommodate application-defined boundary conditions for both light- and protonation-responsivity.

View Article and Find Full Text PDF