Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential.
View Article and Find Full Text PDFFor the functional bacterial surface display of active enzyme of multimeric form, which is generally impossible due to molecular assembly of the monomer subunit subsequent to the secretion of displayed target protein outside the cell, a new surface display system based on B. subtilis spore was developed. Using cotE and cotG of B.
View Article and Find Full Text PDFω-Aminotransferase (ω-AT) is an important class of enzymes for the synthesis of chiral amines or β-amino acids. Family profile analysis was applied to screen putative ω-ATs from Mesorhizobium loti MAFF303099, a nitrogen fixation bacterium that has a larger number of ATs than other microorganisms. By family profile analysis, we selected 10 putative ω-ATs according to E-value.
View Article and Find Full Text PDFTo improve the conventional bacterial surface display systems and to display a co-factor containing enzyme, ω-transaminase from Vibrio fluvialis, which needs pyridoxal phosphate (PLP) for efficient transamination, Bacillus subtilis spore display system with cotG, as an anchoring motif was used. Flow cytometry of the B. subtilis spore-expressing ω-transaminase proved its surface localization on the spore.
View Article and Find Full Text PDFA family of engineered endopeptidases has been created that is capable of cleaving a diverse array of peptide sequences with high selectivity and catalytic efficiency (kcat/KM > 10(40 M(- 1) s(- 1)). By screening libraries with a selection-counterselection substrate method, protease variants were programmed to recognize amino acids having altered charge, size and hydrophobicity properties adjacent to the scissile bond of the substrate, including GluArg, a specificity that to our knowledge has not been observed among natural proteases. Members of this artificial protease family resulted from a relatively small number of amino acid substitutions that (at least in one case) proved to be epistatic.
View Article and Find Full Text PDFThe human tissue kallikrein (KLK) family contains 15 secreted serine proteases that are expressed in a wide range of tissues and have been implicated in different physiological functions and disease states. Of these, KLK1 has been shown to be involved in the regulation of multiple physiological processes such as blood pressure, smooth muscle contraction, and vascular cell growth. KLK6 is overexpressed in breast and ovarian cancer tissues and has been shown to cleave peptide derived from human myelin protein and Abeta amyloid peptide in vitro.
View Article and Find Full Text PDFA putative aminotransferase gene, cc3143 (aptA), from Caulobacter crescentus was screened by bioinformatical tools and overexpressed in E. coli, and the substrate specificity of the aminotransferase was investigated. AptA showed high activity for short-chain beta-amino acids.
View Article and Find Full Text PDFThe effect of dextran sulfate on protein aggregation was investigated to provide the clues of its biochemical mechanism. The interaction between dextran sulfate and BSA varied with the pH values of the solution, which led to the different extent of aggregation prevention by dextran sulfate. Light scattering data with thermal scan showed that dextran sulfate suppressed BSA aggregation at pH 5.
View Article and Find Full Text PDFEscherichia coli OmpP is an F episome-encoded outer membrane protease that exhibits 71% amino acid sequence identity with OmpT. These two enzymes cleave substrate polypeptides primarily between pairs of basic amino acids. We found that, like OmpT, purified OmpP is active only in the presence of lipopolysaccharide.
View Article and Find Full Text PDFA new growth-based screening method for the identification of enantioselective hydrolases, such as lipases and esterases, using pro-antibiotic substrates was devised. An enantioselective hydrolase could be identified by measuring growth rates of cells in liquid media containing (R)- or (S)-2-phenylbutyric chloramphenicol esters. This method can be applied to the screening of novel enantioselective microbes and to the high-throughput screening for the directed evolution of enantioselective hydrolytic enzymes.
View Article and Find Full Text PDFA novel high-throughput screening method that overcame product inhibition was used to isolate a mutant omega-transaminase from Vibrio fluvialis JS17. An enzyme library was generated using error-prone PCR mutagenesis and then enriched on minimal medium containing 2-aminoheptane as the sole nitrogen source and 2-butanone as an inhibitory ketone. An identified mutant enzyme, omega-TAmla, showed significantly reduced product inhibition by aliphatic ketone.
View Article and Find Full Text PDFWecE gene, encoding a sugar aminotransferase (SAT), has been cloned from E. coli K12 and expressed in E. coli BL21 (DE3).
View Article and Find Full Text PDFA simultaneous synthesis of (R)-1-phenylethanol and (R)-alpha-methylbenzylamine from racemic alpha-methylbenzylamine was achieved using an omega-transaminase, alcohol dehydrogenase, and glucose dehydrogenase in a coupled reaction. Racemic alpha-methylbenzylamine (100 mM) was converted to 49 mM (R)-1-phenylethanol (> 99% ee) and 48 mM (R)-alpha-methylbenzylamine (> 98% ee) in 18 h at 37 degrees C. This method was also used to overcome product inhibition of omega-TA by the ketone product in the kinetic resolution of racemic amines at high concentration.
View Article and Find Full Text PDF