Natural products are being discussed as alternatives to commonly used chemicals in antimicrobial therapy. The study aimed to investigate the antimicrobial activity of propolis against microbial species associated with caries, periodontal disease, and Candida infections. Two commercially available ethanolic extracts of Brazilian and one of European propolis (EEP) were used.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
February 2022
Exercise is increasingly recommended as a supportive therapy for people with Multiple Sclerosis (pwMS). While clinical research has still not disclosed the real benefits of exercise on MS disease, animal studies suggest a substantial beneficial effect on motor disability and pathological hallmarks such as central and peripheral dysregulated immune response. The hippocampus, a core area for memory formation and learning, is a brain region involved in MS pathophysiology.
View Article and Find Full Text PDFThere is an increasing interest in revisiting plants for drug discovery, proving scientifically their role as remedies. The aim of this review was to give an overview of the ethnopharmacological uses of L. (PlL) leaves and fruits, expanding the search for the scientific discovery of their chemistry, anti-inflammatory, antioxidative and antimicrobial activities.
View Article and Find Full Text PDFSome constituents of the Mediterranean diet, such as extra-virgin olive oil (EVOO) contain substances such as hydroxytyrosol (HT) and its metabolite homovanillic alcohol (HA). HT has aroused much interest due to its antioxidant activity as a radical scavenger, whereas only a few studies have been made on the HA molecule. Both chemical synthesis and extraction techniques have been developed to obtain these molecules, with each method having its advantages and drawbacks.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a common neurological disorder of putative autoimmune origin. Clinical and experimental studies delineate abnormal expression of specific cytokines over the course of the disease. One major cytokine that has been shown to play a pivotal role in MS is tumor necrosis factor (TNF).
View Article and Find Full Text PDFExtracellular vesicles (EVs) represent a new reality for many physiological and pathological functions as an alternative mode of intercellular communication. This is due to their capacity to interact with distant recipient cells, usually involving delivery of the EVs contents into the target cells. Intensive investigation has targeted the role of EVs in different pathological conditions, including multiple sclerosis (MS).
View Article and Find Full Text PDFIn the past years, several theories have been advanced to explain the pathogenesis of Major Depressive Disorder (MDD), a neuropsychiatric disease that causes disability in general population. Several theories have been proposed to define the MDD pathophysiology such as the classic "monoamine-theory" or the "glutamate hypothesis." All these theories have been recently integrated by evidence highlighting inflammation as a pivotal player in developing depressive symptoms.
View Article and Find Full Text PDFFuture treatments of multiple sclerosis (MS), a chronic autoimmune neurodegenerative disease of the central nervous system (CNS), aim for simultaneous early targeting of peripheral immune function and neuroinflammation. Sphingosine-1-phosphate (S1P) receptor modulators are among the most promising drugs with both "immunological" and "non-immunological" actions. Selective S1P receptor modulators have been recently approved for MS and shown clinical efficacy in its mouse model, the experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDF: It has been recognized for about 20 years that interleukin (IL)-1 signaling is implicated in Multiple Sclerosis (MS), a disabling, chronic, inflammatory and neurodegenerative disease of the central nervous system (CNS). Only recently, multifaceted roles of IL-1 emerged in MS pathophysiology as a result of both clinical and preclinical studies. Notably, drugs that directly target the IL-1 system have not been tested so far in MS.
View Article and Find Full Text PDFMultiple Sclerosis (MS) is a demyelinating and neurodegenerative disease. Though a specific antigen has not been identified, it is widely accepted that MS is an autoimmune disorder characterized by myelin-directed immune attack. Pharmacological treatments for MS are based on immunomodulatory or immunosuppressant drugs, designed to attenuate or dampen the immune reaction, to improve neurological functions.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
February 2020
Aims: The crucial step in the pathogenic events that lead to the development and the progression of multiple sclerosis (MS) is the infiltration of autoreactive T cells in the brain. Data from experimental autoimmune encephalomyelitis (EAE) mice indicate that, together with microglia, T cells are responsible for the enhancement of the glutamatergic transmission in central neurons, contributing to glutamate-mediated excitotoxicity, a pathological hallmark of both EAE and MS brains. Here, we addressed the synaptic role of T cells taken from MS patients.
View Article and Find Full Text PDFGrowing data from human and animal studies indicate the beneficial effects of exercise on several clinical outcomes in patients with multiple sclerosis (MS), an autoimmune, demyelinating disease, suggesting that it may slow down the disease progression, by reducing brain damage. However, the mechanisms involved are still elusive. Aim of this study was to address the effects of voluntary running wheel in a toxic-demyelinating model of MS, in which demyelination and brain inflammation occur in response to cuprizone (CPZ) treatment.
View Article and Find Full Text PDFDisease course of multiple sclerosis (MS) is negatively influenced by proinflammatory molecules released by activated T and B lymphocytes and local immune cells. The endovanilloid system plays different physiological functions, and preclinical data suggest that transient receptor potential vanilloid type 1 (TRPV1) could modulate neuroinflammation in this disorder. The effect of TRPV1 activation on the release of two main proinflammatory cytokines, tumor necrosis factor (TNF) and interleukin (IL)-6, was explored in activated microglial cells.
View Article and Find Full Text PDFAging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.
View Article and Find Full Text PDFSelf-medication plays a major role in the behavioral defense against pathogens and parasites that animals have developed during evolution. The conditions defining this adaptive behavior are: (1) contact with the substance in question must be deliberate; (2) the substance must be detrimental to one or more parasites; (3) the detrimental effect on parasites must lead to increased host fitness. Recent studies have shown that A.
View Article and Find Full Text PDFBackground: Mediterranean farmers traditionally utilized plants, animals, and minerals sourced locally to treat their animals. Research is needed to understand at what extent such knowledge of domestic animal care still survives and to document such traditions for further developments.
Methods: We carried out our field study to recover ancient ethno-veterinary practices by means of questionnaires and interviews to farmers in rural areas of the Mediterranean island of Sardinia (Italy).
Cytokines are constitutively released in the healthy brain by resident myeloid cells to keep proper synaptic plasticity, either in the form of Hebbian synaptic plasticity or of homeostatic plasticity. However, when cytokines dramatically increase, establishing a status of neuroinflammation, the synaptic action of such molecules remarkably interferes with brain circuits of learning and cognition and contributes to excitotoxicity and neurodegeneration. Among others, interleukin-1 (IL-1) and tumor necrosis factor (TNF) are the best studied proinflammatory cytokines in both physiological and pathological conditions and have been invariably associated with long-term potentiation (LTP) (Hebbian synaptic plasticity) and synaptic scaling (homeostatic plasticity), respectively.
View Article and Find Full Text PDFBackground: Laquinimod is an immunomodulatory drug under clinical investigation for the treatment of the progressive form of multiple sclerosis (MS) with both anti-inflammatory and neuroprotective effects. Excitotoxicity, a prominent pathophysiological feature of MS and of its animal model, experimental autoimmune encephalomyelitis (EAE), involves glutamate transporter (GluT) dysfunction in glial cells. The aim of this study was to assess whether laquinimod might exert direct neuroprotective effects by interfering with the mechanisms of excitotoxicity linked to GluT function impairments in EAE.
View Article and Find Full Text PDFSocial insects have evolved colony behavioral, physiological, and organizational adaptations (social immunity) to reduce the risks of parasitization and/or disease transmission. The collection of resin from various plants and its use in the hive as propolis is a clear example of behavioral defense. For Apis mellifera, an increased propolis content in the hive may correspond to variations in the microbial load of the colony and to a downregulation of an individual bee's immune response.
View Article and Find Full Text PDFThe N-palmitoylethanolamine (PEA) is an endogenous member of the endocannabinoid system (ECS) with several biological functions, including a neuromodulatory activity in the central nervous system. To shed light on the neuronal function of PEA, we investigated its involvement in the control of both excitatory and inhibitory transmission in the murine striatum, a brain region strongly modulated by the ECS. By means of electrophysiological recordings, we showed that PEA modulates inhibitory synaptic transmission, through activation of GPR55 receptors, promoting a transient increase of GABAergic spontaneous inhibitory postsynaptic current (sIPSC) frequency.
View Article and Find Full Text PDFInterferon-γ (IFN-γ) has been implicated in the pathogenesis of multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The type-1 cannabinoid receptors (CB1Rs) are heavily involved in MS pathophysiology, and a growing body of evidence suggests that mood disturbances reflect specific effects of proinflammatory cytokines on neuronal activity. Here, we investigated whether IFN-γ could exert a role in the anxiety- and depressive-like behavior observed in mice with EAE, and in the modulation of CB1Rs.
View Article and Find Full Text PDFUnlabelled: MicroRNAs (miRNA) play an important role in post-transcriptional gene regulation of several physiological and pathological processes. In multiple sclerosis (MS), a chronic inflammatory and degenerative disease of the CNS, and in its mouse model, the experimental autoimmune encephalomyelitis (EAE), miRNA dysregulation has been mainly related to immune system dysfunction and white matter (WM) pathology. However, little is known about their role in gray matter pathology.
View Article and Find Full Text PDF